期刊文献+

PBIL算法求解物流中心选址优化问题 被引量:3

Optimization of Logistics Center Location Using PBIL Algorithm
下载PDF
导出
摘要 物流中心的合理布局对整个物流系统的效益有着决定性的影响。通过对物流中心选址问题相关特点和要求进行研究,我们以建设成本和运行费用最优为目标构造了选址问题的数学模型,设计了基于PBIL的物流中心选址优化算法,并进行了算法的实现和测试。测试表明,该算法计算速度快、稳定性好,对约束条件增减具有良好的适应性。最后,提出了该算法的学习概率修正参数动态变化方法,测试表明通过该方法可有效提高算法的收敛速度和寻优能力。 Rational distribution of a logistics center has decisive impact on the effectiveness of the entire logistics system.Through research on the characteristics and requirements of logistics center location,we constructed a mathematical model with capital cost and operating costs for the goal of optimal location problem,and designed the optimization algorithm of logistics center location based on the PBIL.We also make the implementation and testing of the algorithm.Tests show that the algorithm has fast speed,good stability,a good adaptability of increasing or decreasing of the constraints.Finally,we have put forward a dynamic change method of revising parameters of the learning probability in this algorithm,the test shows that through this method can effectively improve the convergence speed and optimization capabilities.
出处 《计算机系统应用》 2010年第11期242-245,共4页 Computer Systems & Applications
基金 教育部人文社会科学研究项目(09YJC630211) 浙江省自然科学基金项目(Y607080)
关键词 PBIL 物流中心 选址模型 进化计算 启发式算法 PBIL logistics centers location model evolutionary computing heuristic algorithm
  • 相关文献

参考文献3

二级参考文献18

  • 1吴坚,史忠科.基于遗传算法的配送中心选址问题[J].华南理工大学学报(自然科学版),2004,32(6):71-74. 被引量:77
  • 2丰建荣,刘正和,刘志河,王成寿.MINLP问题全局优化算法的研究[J].系统仿真学报,2005,17(8):1859-1863. 被引量:7
  • 3康立三 谢云.非数值并行算法(模拟退火算法)[M].北京:科学出版社,1994..
  • 4上海市建设和交通委员会.室外排水设计规范-GB50014-2006[s].北京中国计划出版社,2006.
  • 5Baluja S.Population-based incremental leaming:A method for integrating genetic search based function optimization and competitive learning,Technical report CMU-CS-95-163[R].USA: Carnegie Mellon University,1994.
  • 6刘民,清华大学学报,1998年,38卷,8期,100页
  • 7康立三,非数值并行算法(1)-模拟退火算法,1994年
  • 8Lin S,Operations Research,1972年,21卷,5期,498页
  • 9姜大立,王丰,张剑芳.物流系统模型与应用[M].北京:中国物资出版社,2006.
  • 10Grossman I E.Mixed-integer nonlinear programming techniques for the synthesis of engineering systems[J].Research in Engineering Design,1990,1:205-208.

共引文献41

同被引文献25

  • 1Baluja S. Population-Based incremental learning. Technical Report, CMU-CS-94-163, Carnegie Mellon University, 1994.
  • 2Rastegar R, Hariri A, Mazoochi M. A Convergence Proof for the Population Based Incremental Learning Algorithm. Proc. of the 17th IEEE International Conference on Tools with Artificial Intelligence. Hongkong, China, 2005:387-391.
  • 3Zhang QB, Wu TH, Liu B. A Population Based Incremental Learning Algorithm with Elitist Strategy. Proc. of the 3rdInternational Conference on Natural Computation. Haikou, China, 2007,2:583-587.
  • 4Gallagher M, Frean M. Population Based Continuous Optimi- zation Probabilistic Modeling and Mean Shift. Evolutionary Computation, 2005,13(1):29-42.
  • 5Baluja S, Caruana R. Removing the genetics form the standardgenetic algorithm. Proc. of the International Conference on Machine Learning. San Mateo, 1995, 38-46.
  • 6汪秋云,蒋文保.带软时间窗车辆路径问题的求解算法研究[J].北京信息科技大学学报.2013.08:57-63.
  • 7Thibaut V,Teodor C,Michel G,et al.A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows[J].Computers & Operations Research,2013(40):475-489.
  • 8Duygu T,Nico D,Tom W,et al.Vehicle routing problem with stochastic travel times including soft time windows and service costs[J].Computers & Operations Research,2013(40):214-224.
  • 9Baluja S.Population-based incremental learning:a method for integrating genetic search based function opti-mization and competitive learning[R].Pittsburgh,USA:Carnegie Mellon University,1994.
  • 10彭勇.变需求车辆路线问题建模及基于Inver-over操作的PSO-DP算法[J].系统工程理论与实践,2008,28(10):76-81. 被引量:9

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部