期刊文献+

利用kd_tree索引实现曲率自适应点云简化算法 被引量:8

A point cloud simplification algorithm based on kd_tree and curvature sampling
原文传递
导出
摘要 本文首先简要分析了现有点云简化算法的优缺点,接着设计了一种基于kd_tree数据索引与曲率采样结合的高效简化策略,充分利用曲率采样的精度优势与kd_tree索引的速度优势,实现了基于kd_tree索引的曲率自适应点云简化算法。试验表明,该算法在减少点云数据量的同时,能够较好地保证模型中的特征点,在速度与效果上都达到了较为理想的结果。 First,the article analyzed the advantages and disadvantages of the current point cloud simplification algorithm,and then designed an efficient simplification strategy based on the index of kdtree and curvature sampling.The strategy took full advantage of the accuracy of curvature sampling and the speed advantage of kdtree,realizing the algorithm based on the kdtree Index and curvature adaptive.The experiments showed that the algorithm could reduce the point cloud data effectively,ensure the model feature points,and the speed and effectiveness achieve satisfactoryed result.
作者 马振国
出处 《测绘科学》 CSCD 北大核心 2010年第6期67-69,共3页 Science of Surveying and Mapping
基金 国家高技术研究发展计划(863计划)重点项目(2008AA121301)
关键词 点云简化 kdtree 曲率采样 point cloud simplification kdtree curvature sampling
  • 引文网络
  • 相关文献

参考文献7

  • 1刘艳丰,王守彬,汤仲安,赵永统.基于k-d树的机载LIDAR点云滤波处理[J].测绘工程,2009,18(5):59-62. 被引量:8
  • 2杜小燕.点云数据的光顺去噪与简化技术的研究与实现[D]苏州大学,苏州大学2009.
  • 3刘艳丰.基于kd-tree的点云数据空间管理理论与方法[D]中南大学,中南大学2009.
  • 4Ming-Chih Huang,Ching-Chih Tai.The Pre-Processing of Data Points for Curve Fitting in Reverse Engineering[J]. International Journal of Advanced Manufacturing Technology . 2000 (9)
  • 5Bentley JL.Multidimensional binary search trees used for associative searching. Communications of the ACM . 1975
  • 6George, S,George, V.Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammery and Remote Sensing . 2004
  • 7Axelsson P.Processing of laser scanner data-algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing . 1999

二级参考文献6

  • 1张小红,刘经南.机载激光扫描测高数据滤波[J].测绘科学,2004,29(6):50-53. 被引量:103
  • 2BENTLEY, J. L. Multidimensional binary search trees used for associative searehing[J].Commun. ACM, 1975,18(9) : 509-517.
  • 3BENTLEY, J. L. K-d Trees for Semi-dynamic Point Sets. SCG'90: Proc. 6th Annual Symposium onComputational Geometry, 1990:187-197.
  • 4HEMANT M. KAKED. Range Searching using Kd Tree [EB/OL]. http://www. facweb.iitkgp.ernet. in/-arijit/ courses/autumn2005/kdtree. pdf. 2005.08.
  • 5http://en. wikipedia.org/wiki/Kd-tree.
  • 6万幼川,徐景中,赖旭东,张圣望.基于多分辨率方向预测的LIDAR点云滤波方法[J].武汉大学学报(信息科学版),2007,32(11):1011-1015. 被引量:28

共引文献7

同被引文献71

引证文献8

二级引证文献74

;
使用帮助 返回顶部