期刊文献+

基于小波概要的区间差分skyline研究 被引量:1

Research on Interval Differential Skyline Based on Wavelet Synopsis
下载PDF
导出
摘要 在很多应用中需要分析大量的时序数据,而相对于其它数据具有支配优势的时序数据片段往往会引起特别的关注。基于量值度量,现有的区间skyline查询可以返回给定时间区间内所有没有被其他数据支配的时序数据,这种查询有时不能满足应用的需求,且可能存在"淹没"现象。为此提出了区间差分skyline的概念,针对数据增长率属性进行分析,以解决现有区间量值skyline的不足。目前很多时序数据呈现为数据流的形式,由于资源的限制往往只会维护一个反映数据概况的概要结构,在此背景下提出了基于常用的小波概要支持不同粒度区间差分skyline查询的基本算法,继而在保证准确性的基础上提出了改进后的快速算法。在真实股票价格数据集上的实验验证了所提方法的有效性。 In many applications,we need to analyze a large number of time series.Segments of time series demonstrating dominating advantages over others are often of particular interest.Based on volume measure,the current interval skyline query returns the time series which are not dominated by any other time series in the interval.Some times this kind of query can not satisfy application requirements,and the"submerge"phenomenon may exist.So we proposed the concept of the interval differential skyline which focusing on the attribute of increasing rate of data to fix the shortage of the former kind of interval skyline query.Currently most of the time series are generated as data streams.Due to the limitation of the resource,people only maintain synopses which describe the main data characters.In this background we proposed the algorithm to implement the interval differential skyline query in different granularities based on the common used wavelet synopsis and then we improved the efficiency of the nave algorithm on the basis of keeping the accuracy of the results.Extensive experiments on the real stock price data set demonstrate the effectiveness of the proposed methods.
出处 《计算机科学》 CSCD 北大核心 2010年第11期160-165,202,共7页 Computer Science
基金 国家863项目(2007AA01Z474 2007AA010502 2006AA01Z451)资助
关键词 时序数据 区间差分skyline 小波概要 Time series Interval differential skyline Wavelet synopsis
  • 相关文献

参考文献1

二级参考文献20

  • 1刘兵,汪卫,施伯乐.基于小波变换的序列间距离严格估算[J].计算机研究与发展,2006,43(10):1732-1737. 被引量:3
  • 2陈安龙,唐常杰,元昌安,朱明放,段磊.基于小波和偶合特征的多数据流压缩算法[J].软件学报,2007,18(2):177-184. 被引量:6
  • 3Guha S, Koudas N, Shim K. Data streams and histograms [C] //Proc of the 33rd Annual ACM Symp on Theory of Computing. New York: ACM, 2001:471-475
  • 4Gilbert A, Guha S, Indyk P, et al. Fast, small-space algorithms for approximate histogram maintenance [C]//Proc of the 34th Annual ACM Symp on Theory of Computing. New York: ACM, 2002:389-398
  • 5Gibbons P B, Matias Y. New sampling-based summary statistics for improving approximate query answers [C]// Proc of the ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1998:331-342
  • 6Garofalakis M, Gibbons P B. Wavelet synopses with error guarantees [C] //Proc of the 2002 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2002:476-487
  • 7Gilbert A, Kotidis Y, Muthukrishnan S, et al. One-pass wavelet decompositions of data streams [J]. IEEE Trans on Knowledge and Data Engineering, 2003, 15(3): 541-554
  • 8Cormode G, Muthukrishnan S. An improved data stream summary: The count-min sketch and its applications [J]. Journal of Algorithms, 2005, 55(1): 58-75
  • 9Guha S, Kim C, Shim K. XWAVE: Approximate extended wavelets for streaming data [C]//Proc of the 30th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2004:288-299
  • 10Garofalakis M, K umar A. Deterministic wavelet thresholding for maximum-error metrics [C] //Proe of the 23rd ACM SIGMOD-SIGACT SIGART Symp on Principles of Database Systems. New York: ACM, 2004:166-176

共引文献2

同被引文献33

  • 1周红福,宫学庆,郑凯,周傲英.基于高维空间的在线高效子空间Skyline算法——CSky[J].计算机学报,2007,30(8):1409-1417. 被引量:8
  • 2Kung H T,Luccio F,Preparata F P.On finding the maxima of a set of vectors[J].Journal of the ACM,1975,22(4):469-476.
  • 3Borzsonyi S,Kossmann D,Stocker K.The skyline operator[C]//Proc.of the 17th Int'l Conf.on Data Engineering.Heidelberg,IEEE Computer Society Press,2001:421-430.
  • 4Chomicki J,Godfrey P,Gryz J,et al.Skyline with presorting[C]//Proc.of the 19th International Conference on Data Engineering (ICDE 2003).2003:717-816.
  • 5Tan K-L,Eng P-K,Ooi B C.Efficient progressive skyline com putation[C]// Proc.of the 27th International Conference on Very Large Data Bases(VLDB 2001).2001:301-310.
  • 6Godfrey P,Shipley R,Gryz J.Maximal vector computation in large data sets[C]//Proc.of the 31st international conference on Very large data bases(VLDB 2005).2005:229-240.
  • 7Kossmann D,Ramsak F,Rost S.Shooting stars in the sky:an online algorithm for skyline queries[C]//Proceedings of the 28th International Conference on Very Large Data Bases.2002:275-286.
  • 8Balke W-T,Güntzer U,Zheng J X.Efficient distributed skylining for web information systems[C]//Proc.of the 9th International Conference on Extending Database Technology (EDBT 2004).2004:256-273.
  • 9Huang Zhi-yong,Jensen C S,Lu Hua,et al.Skyline queries against mobile lightweight devices in manets[C]// Proc.of the 22nd International Conference on Data Engineering (ICDE 2006).2006:66-77.
  • 10Lo E,Yip K Y,Lin K-I,et al.Progressive skylining over web-accessible databases[J].Data & Knowledge Engineering,2006,57 (2):122-147.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部