期刊文献+

空间分数阶对流-扩散方程的有限差分法及误差分析 被引量:1

The Finite Difference Method and Error Analysis of the Space Fractional Advection-Diffusion Equation
下载PDF
导出
摘要 针对一类分数阶对流扩散方程,给出了分数阶Cranck-Nicolson数值求值方法,并进行了收敛性分析和对空间方向的外推研究,给出了阐述理论分析结果的2个数值实验. A fractional Cranck-Nicolson numerical evaluation method is given for a fractional diffusion equation,a convergence analysis is made to check the extrapolation of spatial orientation,and two numerical experiments are conducted to elaborate the theoretical analysis results.
作者 丁志清
出处 《五邑大学学报(自然科学版)》 CAS 2010年第4期53-58,共6页 Journal of Wuyi University(Natural Science Edition)
关键词 空间分数阶对流-扩散方程 Cranck-Nicolson方法 收敛性 space fractional advection-diffusion equation Cranck-Nicolson method convergence
  • 相关文献

参考文献10

  • 1PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
  • 2METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-77.
  • 3METZLER R, BARKAI E, KLAFTERL J. Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach[J]. Phys Rev Lett, 1999, 82: 3563-3567.
  • 4VASILY E T, GEORGE M Z. Fractional Ginzburg-Landau equation for fractal media[J]. Physica A, 2005, 354: 249-261.
  • 5LYNCH V E, ACARRERAS B, DEL-CASTILLO-NEGRETE D, et al. Numerical methods for the solution of partial differential equations of fractional order[J]. J Comput Phys, 2003, 192(2): 406-421.
  • 6GORENFLO R, MAINADI F. Time fractional diffusion: a discrete random walk approach[J]. Nonlinear Dynamics, 2002, 29(1-4): 129-143.
  • 7GORENFLO R, GORENFLO F. Discerete random walk models for space-time fractional diffusion[J]. Chemical Physics, 2002, 284(1/2): 531-541.
  • 8MEERSCHAERT M M, TADJERAN C. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Appl Numer Math, 2006, 56(1): 80-90.
  • 9LIU F, ZHUANG P, ANH V, et al. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Applied Mathematics and Computation, 2007, 191(1): 12-20.
  • 10TADJERAN C, MEERSCHACRT M M, SCHEFFLER H P. A second-order accurate numerical approximation for the fractional diffusion equation[J]. J Comput Phys, 2006, 213(1): 205-213.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部