期刊文献+

基于GA-BPNN模型的脱氮组合工艺中UASB工艺主导因子及最佳运行参数研究

Analysis of dominant factors and optimal operation parameters for UASB by denitrification combined technique based on GA-BPNN model
下载PDF
导出
摘要 以匹配后续主体脱氮工艺为目的,采用UASB工艺进行高浓度养殖废水前期厌氧预处理。在前期试验及动力学分析基础上,利用带动量的自适应学习速率梯度下降算法,建立BPNN模型,预测系统温度、系统有机负荷、进水pH值、碱度、进水氨氮浓度、COD、SS 7个生态因子对UASB厌氧过程的影响。采用分割连接权值(PCW)和偏导数(PaD)两种方法定量化分析网络各层神经元的连接权值,从而明确了既定进水条件下,匹配后续脱氮工艺的UASB厌氧过程的主导因子依次为温度、碱度及系统有机负荷。最后采用遗传算法对已建立的BPNN模型寻优,确定了系统最优运行参数。结果表明,UASB系统最优运行参数为:系统反应温度55℃,进水pH值8.2,进水碱度值2 649mg/L,有机负荷1.8 kgCOD/(m^3·d),进水COD 7 000 mg/L,进水氨氮质量浓度844.3 mg/L,SS为2 983.9 mg/L。这表明高温、高COD进水、高pH值及高碱度、高SS进水、低有机负荷、低氨氮进水质量浓度有利于提高系统有机物去除率。 UASB was adopted as primary anaerobic pretreatment for high concentration breeding wastewater to serve the goal of subsequent denitrification. Based on the considerable tests performed by the au- thor at the early stage, the dynamic analysis and partial engineering applications as well as self-adaptive learning rate gradient descent al- gorithm with momentum were used for the BPNN model construction. The model was used to forecast the influence of seven ecological fac- tors including system temperature, system organic loading, influent pH, alkalinity and influent ammonia nitrogen concentration, COD as well as SS on the UASB anaerobic process. Two approaches including partitioned connection weight (PCW) and partial derivative (PaD) were used for quantitative analysis of connection weights of neurons at each layer of network. Hence, the dominant factors for UASB anaero- bic process matched by subsequent denitrification were identified as temperature, alkalinity and system organic loading according to the priority. In the end, genetic algorithm was employed to optimize the built BPNN model. The results showed that the optimal operation pa- rameters of UASB system were as follows: system temperature of 55 ℃, influent pH of 8.2, influent alkalinity of 2 649 mg/L, system organic loading of 1.8 kgCOD/(m3 · d), influent COD of 7 000 rag/L, influent ammonia nitrogen concentration of 844.3 mg/L and SS of 2 983.9 mg/L. The research also showed that high tempera- ture, high influent COD, high pH value, high alkalinity, high influ- ent SS, low organic loading and low influent ammonia nitrogen con- centration were helpful to improve the organic removal efficiency of the system. These factors could be the basis for production control enhancement.
出处 《安全与环境学报》 CAS CSCD 北大核心 2010年第5期24-28,共5页 Journal of Safety and Environment
基金 国家社会科学基金项目(07CJY027) 四川省公益项目(2007SGY034)
关键词 环境工程学 BP神经网络 遗传算法 UASB 主导因子 最佳运行参数 environmental engineering BP neural network genetic algorithm UASB dominant factors optimal operation parameters
  • 相关文献

参考文献13

  • 1LIU Xin(刘昕).Realizing sustainable development of livestock and poultry raising by protecting environment // Proc 2004 China Swine Industry Development Conference (2004中国猪业发展大会).Beijing:China Animal Agriculture Association,2004.
  • 2GAO Keqiang(高克强),GAO Huaiyou(高怀友).Livestock and poultry treatment and disposal of contaminant(畜禽养殖业污染物处理与处置)[M].Beijing:Chemical Industry Press,2004.
  • 3State Environmental Protection Administration(国家环保总局).Pollution prevention and control of national-scale production of livestock and poultry(全国规模化畜禽养殖业污染情况调查及防治对策)[M].Beijing:China Environmental Science Press,2002.
  • 4CAPODAGLIO A G.Sludge bulking analysis and forecasting:application of system identification and artificial neural computing technologies[J].Water Research,1991,25(10):1217-1224.
  • 5BELANCHE L.Prediction of the bulking phenomenon in wastewater treatment plants[J].Artificial Intelligence in Engineering,2000,14(14):307 317.
  • 6McCARTY P L,SMITH D P.Anaerobic wastewater treatment[J].Environmental Science and Technology,1986,20(12):1200-1206.
  • 7XU Zhong(徐中),XIN Zhidong(辛志东).Research on DO control in the water processing(水处理过程中DO值控制的研究).Dalian:Dalian University of Technology,2006.
  • 8张春芝.活性污泥法多变量最优控制的遗传算法实现[J].北京工业职业技术学院学报,2005,4(2):1-5. 被引量:2
  • 9李绍新,邢达,秦华明,杨湘波,谭石慈.油脂降解培养基优化的遗传算法实验研究[J].分析化学,2004,32(4):481-484. 被引量:5
  • 10鞠兴华,王社平,王怡,彭党聪.遗传算法优化分段进水生物脱氮工艺的流量分配[J].中国给水排水,2006,22(21):89-92. 被引量:5

二级参考文献21

  • 1祝贵兵,彭永臻,周利,马勇,张新兰.优化分段进水生物脱氮工艺设计参数[J].中国给水排水,2004,20(9):62-64. 被引量:16
  • 2周雹,周丹.A^2/O除磷脱氮工艺设计计算(上)[J].给水排水,2003,29(3):26-29. 被引量:19
  • 3王社平,于莉芳,韩光辉,朱海荣,彭党聪.A/O工艺分段进水生物脱氮技术分析[J].工业用水与废水,2006,37(1):7-9. 被引量:18
  • 4Maier H R, Dandy G C. Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications [J]. Environmental Modelling and Software,2000,15:101-124.
  • 5Garson G D. Interpreting neural network connection weights [J]. Artificial Intelligence Expert, 1991,6(7):47-51.
  • 6Dimopoulos I, Chronopoulos J, Chronopoulou Sereli A, et al. Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens City (Greece) [J]. Ecological Modelling, 1999,120(2-3): 157-165.
  • 7Nguyen D, Widrow B. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights [J]. Proceedings of the IJCNN, 1990,3:21-26.
  • 8Gorgun E,Artan N,Orhon D,et al.Evaluation of nitrogen removal of the step feeding in large treatment plants[J].Water Sci Technol,1996,34 (1-2):253-260.
  • 9John B Copp.The COST Simulation Benchmark∶ Description and Simulator Manual[M].Luxembourg∶ Office for Official Publications of the European Community,2002.
  • 10Henze M,Gujer W,Mino T,et al.Activated sludge models ASM1,ASM2,ASM2D and ASM3[M].London∶IAW Publishing,2000.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部