摘要
For any even integer k and any integer i, we prove that a (kr +i)-regular multigraph contains a k-factor if it contains no more than kr - 3k/2+ i + 2 cut edges, and this result is the best possible to guarantee the existence of k-factor in terms of the number of cut edges. We further give a characterization for k-factor free regular graphs.
For any even integer k and any integer i, we prove that a (kr +i)-regular multigraph contains a k-factor if it contains no more than kr - 3k/2+ i + 2 cut edges, and this result is the best possible to guarantee the existence of k-factor in terms of the number of cut edges. We further give a characterization for k-factor free regular graphs.
基金
Supported by Natural Sciences and Engineering Research Council of Canada
NNSF (Grant No. 10871119)
RSDP (Grant No. 200804220001) of China