摘要
构造计算测度熵(MetricEntropy)的马尔可夫划分(MarkovPartition)时,对于非线性映射采取等似然假设,影响精度。提出用计算映射的不变分布来进行改进;对逻辑映射导出映射不变分布的算式及迭代格式,进行了测度熵的计算;计算表明,迭代次数不多时即能得出较好结果。
An improvement of constituting Markov partition is proposed for calculating measure theoretic entropy by computing invariant distribution of nonlinear mapping instead assuming equal likelihood for all points over a interval; and the formulations and the iteration forms of invariant distribution of logistic map are derived.It is shown that the better result can be obtained through several iterations and the amount of computation is not larger.
出处
《计算物理》
CSCD
北大核心
1999年第2期151-156,共6页
Chinese Journal of Computational Physics
基金
国家自然科学基金
关键词
测度熵
映射不变分布
马氏链
非线性动力学
metric entropy
invariant distribution
generating partition
Markov partition
logistic map.