期刊文献+

多序列比对的量子点荧光探针检测金黄色葡萄球菌的研究 被引量:1

Detection of Staphyloccocus Aureus 16S rDNA Using QD FRET Bioprobe Based on Multiple Sequence Alignment
下载PDF
导出
摘要 利用以量子点(Quantum dot,QD)作为供体、有机荧光染料作为受体的荧光能量共振转移(Fluorescenceresonance energy transfer,FRET)体系检测核酸等大分子是一种非常重要的检测手段。本文构建了一种检测金黄色葡萄球菌种特异性16S rDNA的新方法。此方法以羧基修饰的525 nm量子点与氨基修饰的DNA在EDC的作用下通过脱水连接形成QD-DNA复合物作为荧光能量共振转移体系的供体、有机荧光基团ROX修饰的DNA作为荧光能量共振转移体系的受体组成能与金黄色葡萄球菌种特异性16S rDNA杂交的检测探针。当探针与靶序列发生杂交时,作为供体的525 nm QD与作为受体的ROX之间的距离被缩短至能有效发生荧光能量共振转移的距离之内。此时,以不能致ROX发光的波长激发量子点发光,其荧光强度下降,而ROX的荧光强度上升。在不存在靶序列的情况下,不会发生这种荧光强度的变化。QD与ROX荧光强度的变化是实现本检测体系快速、简单的重要保证。 Fluorescence resonance energy transfer (FRET) that consists of quantum dot as donors and organic fluorophore dyes as acceptors has been a very important method to detect biomolecules such as nucleic acids. In this work, we established a new FRET detection system of Staphyloccocus aureus species-specific 16S rDNA using QD-ROX FRET bioprobe, in which 525 nm QD-DNA conjugation consisted of the carboxyl-modified QD and the amino-modified DNA in the presence of EDC. Both ROX-DNA and the conjugation above could hybridize with the target DNA after forming the QD- ROX bioprobe. When the hybridization made the distance between the QD and ROX to meet FRET effect needed, 525 nm QD fluorescence intensity decreased and ROX fluorescence intensity increased. In the control, there was no notable change of fluorescence intensities without target DNA. It is very clear that the change of the QD and ROX fluorescence intensities provide the good base and guaranty for this rapid and simple detection system.
作者 陈伶利 李杰
出处 《激光生物学报》 CAS CSCD 2010年第5期587-592,共6页 Acta Laser Biology Sinica
基金 湖南省教育厅青年基金项目(07B054) 湖南省重点实验室开放基金项目(B0294)
关键词 量子点 16S rDNA检测 金黄色葡萄球菌 quantum dot 16S rDNA detection staphyloccocus aureus
  • 相关文献

参考文献21

  • 1BRUCHEZ M J,MORONNE M,GIN P,et al.Semiconductor Nanocrystals as Fluorescent Biological Labels[J].Science,1998,281:2013-2016.
  • 2CHAN W C,NIE S.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J].Science,1998,281:2016-2018.
  • 3EDGAR R,MCKINSTRY M,HWANG J,et al.High-sensitivity Bacterial Detection using Biotin-tagged Phage and Quantum-dot Nanocomplexes[J].PNAS,2006,103:4841-4845.
  • 4LEI Y,TANG H,FENG M,et al.Applications of Fluorescent Quantum Dots to Stem Cell Tracing in vivo[J].J Nanosci Nanotechnol.2009,9(10):5726-5730.
  • 5HOHNG S,HA T.Single-molecule Quantum-dot Fluorescence Resonance Energy Tranafer[J].Chem Phys Chem,2005,6:956-960.
  • 6YU W W.Semiconductor Quantum Dots:Synthesis and Watersolubilization for Biomedical Applications[J].Expert Opin Biol Ther,2008,8 (10):1571-1581.
  • 7CADY N C,STRICKLAND A D,BAIT C A.Optimized Linkage and Quenching Strategies for Quantum Dot Molecular Beacons[J].Molecular and Cellular Probes,2007,21:116-124.
  • 8WU P,HE Y,WANGG H F.et al.Conjugation of Clucose Oxidase onto Mn-doped ZnS Quantum Dots for Phoaphorescent Sensing of Glucose in Biological Fluids[J].Anal Chem,2010,15,82(4):1427-1433.
  • 9YUN Xing,CHAUDRY Q.Bioconjug ted Quantum Dots for Multiplexed and Quantitative Immunohistochemistry[J].Nature Protocols,2007,2(5):1152-1165.
  • 10PATHAK S,TOLENTINO R.NGUYEN K,et al.Quantum Dot Labeling:and Imaging of Glial Fibrillary Acidic Protein Intermediate Filaments and Gliosis in the Rat Neural Retina and Dissociated Astrocytes[J].J Nanoaci Nanotechnol,2009,9(8):5047-5054.

二级参考文献13

  • 1Krimmer V, Merkert H, Frosch M, et al. J Clin Microbiol, 1999, 37 : 2667 - 2673.
  • 2Lee Y L, Cesario T, Pax A, et al. Age Ageing, 1999, 25:229 - 32.
  • 3Mulligan M E, Murray-Leisure K A, Ribner B S, et al. Am J Med, 1993, 94: 313-28.
  • 4Proctor R A, Langevelde P, Kristjansson M, et al. Clin Infect Dis, 1995, 20: 95-102.
  • 5Tyagi S, Kramer F R. Nat Biotechnol, 1996, 14: 303- 308.
  • 6Goel G, Kumar A, Puniya A K, et al. J Appl Microbiol, 2005, 99: 435 - 442.
  • 7Bockisch B, Grunwald T, Spinner E, et al. Nucleic Acids Res, 2005, 33, (11).
  • 8Gotea V, Veeramachaneni V, Makalowski W. Nucleic Acids Res, 2003, 31(23) : 6935 - 6941.
  • 9Higgins D. Nucleic Acids Res, 1994, 22:4673 -4680.
  • 10J.萨姆布鲁克.分子克隆试验指南[M].第3版.北京:科学出版社,2003.PP.522.

同被引文献49

  • 1刘金华,刘韬,孟日增,聂丹丹,刘阳,薛力刚.利用光纤倏逝波生物传感器检测食品中大肠杆菌O157:H7[J].食品安全质量检测学报,2014,5(4):1142-1146. 被引量:7
  • 2Jennings TL,Triulzi RC,Tao G,et al.Simplistic attachment and multispectral imaging with semiconductor nanocrystals. Sensors . 2011
  • 3Wang H,Li YB,Slavik M.Rapid detection of Campylobacter jejuni in poultry products using quantum dots and nanobeads based fluorescent immunoassay. Int J Poultry Sci . 2014
  • 4Dudak FC,Boyaci?H.Enumeration of immunomagnetically captured Escherichia coli in water samples using quantum dot-labeled antibodies. J Rapid Meth Aut Mic . 2008
  • 5Kim G,Park SB,Moon JH,et al.Detection of pathogenic Salmonella with nanobiosensors. Anal Meth . 2013
  • 6Wang H,Li YB,Slavik M.Rapid and simultaneous detection of Salmonella and Campylobacter in poultry samples using quantum dots based fluorescent immunoassay coupled with magnetic immunoseparation. Int J Poultry Sci . 2014
  • 7Kuang H,Cui G,Chen X,et al.A one-step homogeneous sandwich immunosensor for salmonella detection based on magnetic nanoparticles (MNPs)and quantum dots (QDs). Int J Mol Sci . 2013
  • 8Hu YH,Wang CC,Bai B,et al.Detection of Staphylococcus Aureus using quantum dots as fluorescence labels. Int J Agric&Biol Eng . 2014
  • 9Bruno JG.Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens . 2014
  • 10XU F,XU D,MING X,et al.Quantum dot-based immunochromatography test strip for rapid detection of campylobacter jejuni. Journal of Nanoscience and Nanotechnology . 2013

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部