期刊文献+

内交换p群的中心扩张(Ⅲ) 被引量:4

The Central Extension of Inner Abelian p-Groups(Ⅲ)
原文传递
导出
摘要 设N,H是任意的群.若存在群G,它具有正规子群≤Z(G),使得(?)N且G/(?)H,则称群G为N被H的中心扩张.本文完全分类了当N为p^2阶初等交换p群及H为内交换p群时,N被H的中心扩张得到的所有不同构的群. Assume N and H are groups.If there is a group G which has a normal subgroup ≤Z(G) such that ■N and G/H,then G is called a central extension of N by H.In this paper,we classify all groups which are central extensions of N by H,where N is an elementray abelian p-group of order p^2 and H is an inner abelian p-group.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第6期1051-1064,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10671114) 山西省自然科学基金(2008012001) 山西省回国留学人员科研项目([2007]13-56)资助
关键词 中心扩张 初等交换p群 内交换p群 central extensions elementray abelian p-groups inner abelian p-groups
  • 相关文献

参考文献14

  • 1Berkovich Y., Janko Z., Structure of finite p-groups with given subgroups, Contemp. Math., 2006, 402:13-93.
  • 2Glauberman G., Large subgroups of small class in finite p-groups, J. Algebra, 2004, 272(1): 128-153.
  • 3Glauberman C., Abelian subgroups of small index in finite p-groups, J. Group Theory, 2005, 8(5): 539-560.
  • 4Glauberman C., Centrally large subgroups of finite p-groups, J. Algebra, 2006, 300(2): 480-508.
  • 5Janko Z., Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math., 2004, 566:135-181.
  • 6Robinson D. J. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
  • 7Suzuki M., Group Theory I, New York: Springer-Verlag, 1982.
  • 8Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p2 are metacyclic, to appper in Acta Math. Sci.
  • 9Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.
  • 10Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165-1178.

同被引文献16

  • 1宋蔷薇,李慧杰,张新媛.亚循环p群的p次中心扩张(Ⅰ)[J].数学的实践与认识,2020,0(2):265-269. 被引量:2
  • 2俞曙霞,班桂宁.关于LA群的一个定理[J].广西大学学报(自然科学版),1994,19(1):10-17. 被引量:13
  • 3徐明曜,曲海鹏.有限P群[M].北京:北京大学出版社,2010.
  • 4Golovanov M I. Finite p-groups with the condition |Im (P)| = pm-1 (C)[M]. Krasnoyarsk: Otdel Akad Nauk SSR, 1973.
  • 5Zhang Qinhai, Wei Junjun. The intersection of subgroups of finite p-groups[J].Arch der Math,2011,96(1) :9-17.
  • 6Redei L. Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommu- tativen echten Untergruppen und die Ordnungszahlen,zu denen nut kommutative Gruppen gehoren[J]. Comment Math Helvet, 1947,20: 225-264.
  • 7Zhang Qinhai, Sun Xiujuan, An Lijian, et al. Finite p-groups all of whose subgroups of index p2 are abelian[J]. Algebra Colloquium, 2008,15(1) : 167-180.
  • 8Xu Mingyao, An Lijian, Zhang Qinhai. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements[J]. J Algebra, 2008,319 : 3603-3620.
  • 9Blackburn N. Generalizations of certain elementary theorems on p-groups[J]. Proc Lon-don Math Soc, 1961,11 (3) : 1-22.
  • 10Berkovieh Y, Janko Z. Groups of Prime Power Order II[M]. New York:Walter de Gruyter,2008.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部