期刊文献+

有限辛群Sp(4,3)的Cartan不变量矩阵

The Cartan Invariant Matrix for the Finite Symplectic Group Sp(4,3)
原文传递
导出
摘要 计算Cartan不变量是有限群模表示理论中一个重要研究课题.本文利用代数群模表示理论中的一系列结果,计算了有限辛群Sp(4,3)的Cartan不变量矩阵. Computing the Cartan invariant is an important subject in modular representation theories of finite groups.In this paper,using some results from representations of algebraic groups,we obtain the Cartan invariant matrix for the finite symplectic group Sp(4,3).
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第6期1131-1138,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10671142) 上海高校选拔培养优秀青年教师科研专项基金(gjd09032)
关键词 辛群 CARTAN不变量 Cartan不变量矩阵 symplectic group Cartan invariant Cartan invariant matrix
  • 相关文献

参考文献10

  • 1Jantzen J. C., Representations of Chevalley Croups in Their own Characteristic, The Arcata Conference on Representations of Finite Groups, Proc. Sympos. Pure Math., vol. 47, Part 1, Amer. Math. Soc., Providence, RI, 1987.
  • 2Ye J. C., On the first Cartan invariants for the group Sp(4,pn), Acta. Marth. Siniea (N.S.), 1988, 4: 18-27.
  • 3Liu A. L., Ye J. C., Cartan invariant matrix for the finite Chevalley groups and classical Lie algebras, Algebra Colloq, 2003, 10: 33-39.
  • 4Humphreys J. E., Some computations of Cartan invariants for finite group of Lie type, Comm. Pure Appl. Math., 1973, 26: 745-755.
  • 5Thackray J. C., Modular Representations of some Finite groups, Ph. D. Thesis, Cambridge: Cambridge Univ. 1980.
  • 6Jantzen J. C., Representations of Algebraic Groups, Orlando: Academic Press, 1987.
  • 7Chastkofsky L., Projective characters for finite Chevalley groups, J. Algebra, 1981, 69: 347-357.
  • 8Yu G. H., Ye J. C., First Cartan invariant for Sp(4, 5n), Journal of Tongji University (Natural Science), 2004, 32(12): 1682 1687.
  • 9Chastkofsky L., Feit W., On the projective characters in characteristic 2 of the groups Suz(2^m) and Sp(2^m), Inst. Hautes Etudes Sci. Publ. Math., 1980, 51: 9-36.
  • 10Hu Y. W., Ye J. C., On the first Cartan invariant for finite groups of Lie type, Communications in Algebra, 1993. 21: 935-950.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部