期刊文献+

广义商高数的纯指数Diophantine方程a^x+b^y=c^z 被引量:4

The Pure Exponential Diophantine Equation a^x + b^y = c^z for Generalized Pythagorean Triplets
原文传递
导出
摘要 设r是大于1的正奇数,m是正偶数;又设(a,b,c)=(|V(m,r)|,|U(m,r)|,m^2+1),其中.本文运用Gel'fond-Baker方法证明了:当m>10~6r^6。时,方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,r). Let r be a positive odd integer with r 1,and let m be a positive even integer.Further more let {a,b,c) =(|V(m,r)|,|U(m,r)|,m^2 + 1),where .In this paper,using the Gel'fond-Baker method,we prove that if m10~6r^6,then the equation a^x+b^y=c^z has only the positive integer solution (x,y,z) = {2,2,r).
作者 乐茂华
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第6期1239-1248,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10771186 10971184)
关键词 纯指数DIOPHANTINE方程 广义商高数 Gel'fond-Baker方法 pure exponential Diophantine equation generalized Pythagorean triplet Gel'fond-Baker method
  • 相关文献

参考文献2

二级参考文献13

  • 1Mahler, K.: Zur Approximation algebraischer Zahler I: Uber den grossten Primteiler binarer Formen. Math.Ann., 107, 691-730 (1933).
  • 2Gel'fond, A. O.: Sur la divisibilitd de la difference des puissances de deux nombres entiers par une puissance d'un ideal premier. Mat. Sb., 7, 7-25 (1940).
  • 3Terai, N.: The diophantine equation a^x +b^y = c^z. Proc. Japan Acad. Ser. A Math. Sci., 70, 22-26 (1994).
  • 4Cao, Z. F.: A note on the diophantine equation a^x + b^y = c^z. Acta Arith., 91, 85-93 (1999).
  • 5Le, M. H.: On the diophantine equation a^x + b^y = c^z. J. Changchun Teachers College Ser. Nat. Sci., 2,50-62 (1985) (in Chinese).
  • 6Terai, N.: The diophantine equation a^x+ b^y= c^z. Ⅲ, Proc. Japan Acad. Ser. A Math. Sci.. 72, 20-22(1996).
  • 7Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential diophantine equations. Acta Arith., 90, 17- 35 (1999).
  • 8Dong, X. L., Cao, Z. F.: The Terai-Jesmanowicz conjecture concerning the equation a^x+ b^y = c^z. Chinese Math. Ann. Ser. A, 21(A), 709-714 (2000) (in Chinese).
  • 9Bilu, Y., Hanrot, G., Voutier, P. M.: (with an Appendix by Mignotte, M.), Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math., 539, 75-122 (2001).
  • 10Mordell, L. J.: Diophantine Equations, Academic Press, London, 1969.

共引文献13

同被引文献27

  • 1胡永忠,袁平之.指数丢番图方程a^x+b^y=c^z[J].数学学报(中文版),2005,48(6):1175-1178. 被引量:8
  • 2杨仕椿.指数丢番图方程|m^4-6m^2+1|~x+(4m^3-4m)~y=(m^2+1)~z的解[J].广西科学,2007,14(1):19-21. 被引量:3
  • 3刘志伟.关于三项纯指数Diophantine方程a^x+b^y=c^z[J].纯粹数学与应用数学,2007,23(1):28-30. 被引量:1
  • 4Jesmanowicz L. Kilka uwag o liczbach pitagorejskich [J]. Wiadom Mat, 1955/1956,1 (2) .. 196-202.
  • 5Le M H. A note on Jesmanowicz conjecture[J]. Colloq Math,1995,69(1) ..47-51.
  • 6Cao Z F,Dong X L. An application of a lower bound for linear forms in two logarithms to the Terai-Jesmanowiez conjecture[J]. Acta Arith, 2003,110(2) .. 153-164.
  • 7Hu Y Z,Yuan P Z. On the exponential diophantine equa- tion a -{- b c" rJ]. Acta Mathematica Sinica,Chinese Series,2005,48(6) .. 1175-1178.
  • 8Le M H. An open problem concerning the diophantine e- quation a -1- by = c [J]. Publ Math Debrecen, 2006,68 (3/4) :283-295.
  • 9Le M H. A note on the Diophantine systema az q-bz = cr and aq- by = c [J-]. Acta Mathematica Sinica,Chinese Series,2008,51 (4) : 677-684.
  • 10Guy R K. Unsolved problems in number theory [M].3版.北京:科学出版社,2007.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部