摘要
在Paul提出的圆环形城市模型基础上,通过引入成本分布函数,扩展了Pal和Matsushima的模型,建立了一个新的带有成本因子的选址与产量竞争的双寡头竞争模型.结果表明:如果成本分布函数是常数,那么两企业均衡地分布于圆环形城市将达到完美的纳什均衡;如果成本分布函数是严格凸函数,当运输系数较小时,企业将在产品成本分布函数最小点处集聚,并各自达到利润最大化.
The paper expand the model of the Pal and Matsushima.Based on the enterprises spatial competition factors that add cost,a models of location choice are constructed in this paper.The result express:If the enterprises cost distributing function is constant,two enterprises are distributed in the circle city balancedly,then,they will attain Nash equilibrium perfectly;If their cost distributing function is convex function strictly,being the transport expenses decrease,they will be located at the place that the cost is minimum.At the same time the enterprises maximize their profits.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第20期12-17,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(71063001)
关键词
古诺竞争
纳什均衡
空间集聚
选址
cournot competition
nash equilibrium
spatial agglomeration
location choice