期刊文献+

古诺竞争的选址模型研究

A Model of Location Choice:Cournot Competition and Spatial Agglomeration
原文传递
导出
摘要 在Paul提出的圆环形城市模型基础上,通过引入成本分布函数,扩展了Pal和Matsushima的模型,建立了一个新的带有成本因子的选址与产量竞争的双寡头竞争模型.结果表明:如果成本分布函数是常数,那么两企业均衡地分布于圆环形城市将达到完美的纳什均衡;如果成本分布函数是严格凸函数,当运输系数较小时,企业将在产品成本分布函数最小点处集聚,并各自达到利润最大化. The paper expand the model of the Pal and Matsushima.Based on the enterprises spatial competition factors that add cost,a models of location choice are constructed in this paper.The result express:If the enterprises cost distributing function is constant,two enterprises are distributed in the circle city balancedly,then,they will attain Nash equilibrium perfectly;If their cost distributing function is convex function strictly,being the transport expenses decrease,they will be located at the place that the cost is minimum.At the same time the enterprises maximize their profits.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第20期12-17,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(71063001)
关键词 古诺竞争 纳什均衡 空间集聚 选址 cournot competition nash equilibrium spatial agglomeration location choice
  • 相关文献

参考文献7

  • 1Hotelling H. Stability in competition[J]. Economic Journal, 1929, 39: 41-57.
  • 2Paul Cheshire, Edwin S Mills. A generalized model spatial competition[J]. The American Economic Renew, 1978, 68(5): 108-129.
  • 3Mayer T. Spatial cournot competition and heterogeneous production costs across location[J]. Regional Science and Urban Economics, 1998, 30: 325-352.
  • 4Pal D. Does cournot competition yield spatial agglomeration[J]. Economics letters, 2001, 60: 49-53.
  • 5Matsushima N. Cournot competition and spatial agglomeration revisited[J]. Economics letters, 2001, 73: 175-197.
  • 6Fujita M, Thisse J. Does geographical agglomeration foster economic growth ? and who gains and loses from it?[J]. The Japanese Economic Review, 2003, 54: 121-145.
  • 7Krugman P. first nature second nature and metropolitan location[J]. Journal of Regional Science, 1993, 33: 129-144.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部