期刊文献+

对称随机变量序列的Hájek-Rényi型不等式和强大数律 被引量:4

The Hájek-Rényi Inequality and Strong Law of Large Numbers For Sequences of Symmetric Random Variables
原文传递
导出
摘要 得到了对称随机变量序列的Hájek-Rényi型不等式,并利用它研究了对称随机变量序列的强大数律. In this paper,the Hajek-Renyi inequality for sequences of symmetric random variable are obtained.By the Hájek-Rényi inequality we research into strong law of large numbers for sequences of symmetric random variables.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第20期146-152,共7页 Mathematics in Practice and Theory
关键词 对称随机变量 Hájek-Rényi不等式 强大数律 symmetric random variables the Hájek-Rényi inequality strong law of large numbers
  • 相关文献

参考文献7

  • 1Loeve M. Probability theory I(4th edition) [M]. New York:Springer_Verlag, 1977.
  • 2Taylor R L, Tien-Chung Hu. On laws of large numbers for exchangeable random variables[J]. Stoch Anal Appl, 1987, 5(3): 323-334.
  • 3Hajeck J and A Renyi. Generalization of an inequality Kolmogrov[J]. Acte Math Acad Sci Hung, 1995(6): 281-283.
  • 4Gan shixin. The Hajeck-Renyi inequality for Banach space valued martingales and the P smoothness of Banach space[J]. Statist probab Lett, 1997(32): 45-248.
  • 5Jingjan Liu, Gan shixin, PingYan chen. The Hajeck-Renyi inequality for the NA random variables and its application[J]. Statist probab Lett, 1999(43): 99-105.
  • 6刘京军,陈平炎,甘师信.φ-混合序列的大数定律[J].数学杂志,1998,18(1):91-95. 被引量:21
  • 7邱德华,甘师信.混合序列的Hájeck-Rènyi型不等式及强大数律[J].数学的实践与认识,2007,37(3):107-111. 被引量:10

二级参考文献8

共引文献29

同被引文献9

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部