期刊文献+

Hilbert空间中的g-Riesz分解

g-Riesz decomposition in Hilbert spaces
原文传递
导出
摘要 在复Hilbert空间中给出g-Riesz分解的定义,得到g-Riesz分解与g-Riesz基之间的关系,并利用泛函分析的算子理论对g-Riesz分解的稳定性进行讨论. We introduce the definition of a g - Riesz decomposition in a complex Hilbert space and obtain a relation between a g - Riesz decomposition and a g - Riesz basis. Then we use the operator theory in functional analysis to discuss the stability of a g - Riesz decomposition.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期617-622,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01007) 福建省教育厅科研资助项目(JA08013)
关键词 HILBERT空间 G-框架 g—Riesz分解 g—Riesz基 稳定性 Hilbert spaces g - frame g - Riesz decomposition g - Riesz basis stability
  • 相关文献

参考文献16

  • 1杨晓慧,李登峰.G-框架及其对偶框架的一些等式和不等式[J].数学学报(中文版),2009,52(5):1033-1040. 被引量:11
  • 2李登峰,孙文昌.广义框架的一些等式和不等式[J].数学年刊(A辑),2008,29(4):513-518. 被引量:8
  • 3Yan Jin WANG Yu Can ZHU~(1))Department of Mathematics,Fuzhou University,Fuzhou 350002,P. R. China.G-Frames and g-Frame Sequences in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2009,25(12):2093-2106. 被引量:13
  • 4Najati A,Rahimi A.Generalized frames in Hilbert spaces. Bull Iranian Math Soc . 2009
  • 5Najati A,Faroughi MH,Rahimi A.G-frames and stability of g-frames in Hilbert spaces. Methods Funct Anal Topolo-gy . 2008
  • 6ZhuYC.Characterization of g-frames and g-Riesz bases inHilbert spaces. Acta Mathematica Sinica,English Series . 2008
  • 7Li D F,Sun W C.Expansion of frames to tight frames. Acta Math Sin (Engl Ser) . 2009
  • 8Sun W.G-frames and g-Riesz bases. Journal of Mathematical Analysis and Applications . 2006
  • 9Christensen O.An Introduction to Frames and Riesz Bases. . 2003
  • 10Duffin RJ,Schaeffer AC.A class of nonharmonic Fourier series. Transactions of the American Mathematical Society . 1952

二级参考文献41

  • 1Bolcskei H., Hlawatsch F., Feichtinger H. G., Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Process., 1998, 46: 3256-3268.
  • 2Frichtinger H. G., Grochenig K., Theory and Practice of Irregular Sampling, in Wavelets: Mathematics and Applications, (Benedetto I. I. and Frazier M., eds.), CRC Press, 1994: 305-363.
  • 3Candes E. J., Harmonic analysis of neural networks, Appl. Comput. Harmonic Anal., 1999, 6: 197-218.
  • 4Candes E. J., Donoho D. L., New tight frames of Curvelets and optimal representations of objects with piecewise C^2 singularities, Comm. Pure. Appl. Math., 2004, 56:216-266.
  • 5Benedetto I., Powell A., Yilmaz O., Sigma-Delta quantization and finite frames, IEEE Trans. Information Theory., 2006, 52:1990-2005.
  • 6Heath R. W., Paulraj A. J., Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans. Signal Process., 2002, 50: 2429-2441.
  • 7Christensen O., An Introduction to Frames and Riesz Bases, Boston: Birkhauser, 2003.
  • 8Li D. F., Xue M. Z., Bases and Frames in Banach Spaces, Beijing: Science Press, 2007 .
  • 9Sun W. C., G-frames and G-Riesz bases, J. Math. Anal. Appl., 2006, 322(1): 437-452.
  • 10Balab R., Casazza P G., Edidin D., Kutyniok G., A fundamental identity for Parseval frames, Proc. Amer. Math. Soc., 2007, 135: 1007-1015.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部