摘要
在Hilbert空间中引入拟g-Riesz基的概念.给出拟g-Riesz基的算子刻画,得到在有限维条件下拟g-Riesz基的框架算子的核维数是有限的,但框架算子的核维数是有限的g-框架未必是拟g-Riesz基.并讨论拟g-Riesz基的扰动性.
The concept of a near g - Riesz basis in a Hilbert space was introduced and some characterizations of near g- Riesz bases were given. Let Q be the pre -frame operator of a gframe {Aj}j∈J. We obtain that dimKer Q 〈 + ∞ if {Aj}j∈J is a near g - Riesz basis in finite - dimensional spaces, but the converse proposition does not hold . The stability of near g - Riesz bases was also discussed.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第5期623-628,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省自然科学基金资助项目(2009J01007)
福建省教育厅科研资助项目(JA08013)
福建农林大学校青年基金资助项目(07B23)