期刊文献+

生态补偿标准的确定——最小数据法及其在民勤的应用 被引量:16

Determination of the Eco-compensation Criteria:An Application of the Minimal Data Method in Minqin,Gansu
下载PDF
导出
摘要 生态补偿标准时生态补偿的研究和有效实施过程中的核心问题之一.通过分析当前主要的补偿标准确定,指出其方法存在的不足.介绍了一种新的计算生态补偿标准的方法——最小数据法.该方法基于补偿对象的微观决策机制,考虑个体间的差异,模拟其经济行为,从而确定在特定生态恢复目标下的生态补偿补偿标准.利用最小数据方法,选择民勤为研究区域,分析了为实现区域水资源合理利用和分水目标下的生态补偿标准.结果表明:为实现生态补偿的目标,民勤需对退耕耕地采用的补偿标准为6327元·hm-2·a-1,这一标准低于当地耕地的平均收益,说明采用最小数据法确定补偿标准能提高生态补偿资金的使用效率. The determination of the eco-compensation criteria is a very important issue in eco-compensation study.Usually,there are two criteria:the value of ecosystem services and the opportunity costs of the supply of these services.However,the valuation of ecosystem services is still under debate.When come to cost method,researchers usually just calculate the total costs or the mean costs,but the heterogeneities of stakeholders were not considered.Obviously,this will harm the efficiency of eco-compensation.The minimal data method is a new method which can be used to determine the criteria of eco-compensation.The method show,the supply of ecosystem services can be derived from the spatial distribution of opportunity cost of providing these services.According the supply curve,the eco-compensation criteria can be calculated under certain ecological goal.We show how this method works in details,and then apply the minimal data method in Minqin.The results show,to achieve the goal of reduction of farmland by 34.47%,the eco-compensation criteria should be paid at 6 327Yuan·hm-2·a-1,which is less than the criteria based on mean cost(7 559.1Yuan·hm-2·a-1).These results demonstrate that the using of minimal data method can improve the efficiency of eco-commendation.
出处 《冰川冻土》 CSCD 北大核心 2010年第5期1044-1048,共5页 Journal of Glaciology and Geocryology
基金 国家自然科学基金项目(40971291) 中国科学院知识创新工程重要方向项目群(KZCX2-YW-Q10-4-03)资助
关键词 生态补偿标准 最小数据法 民勤 eco-compensation criteria minimal data method Minqin
  • 相关文献

参考文献12

二级参考文献174

共引文献932

同被引文献223

引证文献16

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部