期刊文献+

低复杂度QR-RLS自适应均衡算法的实现 被引量:1

Realization of QR-RLS Adaptive Equalization Algorithm with Low Complexity
原文传递
导出
摘要 传统CORDIC算法需要通过查找表和许多乘法器才能实现多种复杂函数的计算,这会导致硬件电路实现复杂,运算速度降低。在向量模式下提出一种改进型CORDIC算法,它不需要查找表和模校正因子,只需通过简单的移位和加减运算就能实现多种复杂函数的计算,从而能够减少硬件的开销,提高运算的性能。最后将该算法应用于QR-RLS自适应均衡算法的Givens旋转中,完成了输入数据矩阵的QR分解,实现了自适应均衡的效果。 Traditional coordinate rotation digital computer(CORDIC) algorithm can realize the calculation of many complex functions by look-up table and many multipliers,which will result in the complexity of hardware circuit and decrease the operation speed.A modified CORDIC algorithm is proposed in rotation mode.It needn't look-up table and scale factor correction and can realize the calculation of many complex functions only by simple shift and addition-subtraction operation,which can reduce the cost of hardware and improve operational performance.Finally,the proposed algorithm is applied to the Givens rotation of QR-RLS adaptive equalization algorithm,which completes QR-decomposition of input data matrix and realizes adaptive equalization effect.
作者 张天瑜
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第19期153-158,共6页 Journal of Wuhan University of Technology
关键词 向量模式 查找表 模校正因子 改进型CORDIC算法 自适应均衡 QR-RLS算法 Givens旋转 vectoring mode look-up table scale factor correction modified CORDIC algorithm adaptive equalization QR-RLS algorithm Givens rotation
  • 相关文献

参考文献6

  • 1Sumanasena M G B.A Scale Factor Correction Scheme for the CORDIC Algorithm[].IEEE Transactions on Computers.2008
  • 2SUNG T,HSIN H C.Design and simulation of reusable IPCORDIC core for special-purpose processors[].Computer&Digital Techniques.2007
  • 3J.Granado,A.Torralba,J.Chavez,V.Baena-Lecuyer.Opti mi-zation of CORDIC Cells in the Backward Circular Rotation Mode.Int[].JElectronCommun(AE).2007
  • 4ANTELO E,VILLALBA J,ZAPATA E L.A low-latency pipelined2D and3D CORDIC processors[].IEEE Transactions on Computers.2008
  • 5Nakamori S.Square-root algorithms of RLS wiener fil-ter and fixed-point smoother in linear discrete stochas-tic systems[].Journal of Applied Mathematics.2008
  • 6Haykin S.Adaptive filter theory[]..2002

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部