期刊文献+

自适应迭代区域搜索法用于直线度的精密评定 被引量:2

. An Adaptive Area Search Method for Straightness Precision Evaluation
下载PDF
导出
摘要 为实现直线度误差的精密评定,提出自适应迭代区域搜索方法。首先对测量采样数据以第一测量点为原点进行坐标平移预处理,然后计算各测量点与原点连线的斜率分布区间,以此作为初始搜索区间。根据设置的每代候选基准数计算初始搜索步长,以初始搜索区间中线为搜索起始基准线开始搜索计算,可得到当代最小直线度误差对应的评定基准直线,并以其为新一代搜索计算的起始搜索基准线,以新、旧起始基准直线的斜率确定新的搜索区间和搜索步长,以新的起始基准直线开始搜索新一代最小直线度误差对应的基准线,反复迭代计算至终止条件。对两组实例进行了计算。实例验算证明迭代区域搜索方法原理正确、精度较高、运算速度快、简单易于实现。 In order to precisely evaluate the straightness error,an adaptive strategy is proposed to locate the datum line based on basic area search approach. First,the sampled measured dataset was translated with the first measured point as the new origin. Secondly,the slopes of the lines between the origin (first point) and other points were computed. The range of the slopes was used as the initial search area and the initial start line was its middle line; the initial search step was computed together with the appointed number of candidate lines and some candidate datum lines were given. Thirdly,the straightness errors can be worked out which conform to the minimum zone condition for each candidate datum lines and the one with minimum straightness error was selected and used as the new start line of the next search. The new search area was the area between the new and old datum lines and the new search step was computed with it. The above computation continues until the terminal condition is met. Two groups of examples were computed. The computation results show that the proposed method is correct,precise,efficient and easy to realize.
出处 《机械科学与技术》 CSCD 北大核心 2010年第11期1525-1529,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 福建省科技计划重点项目(2008I0020) 福建省自然科学基金计划项目(T0850004)资助
关键词 直线度 误差 评定 区域搜索法 自适应 straightness error evaluation area search approach adaptive
  • 相关文献

参考文献6

二级参考文献30

共引文献80

同被引文献18

  • 1赵茜,王东霞,刘兰英.圆柱度误差及其评定方法综述[J].计量与测试技术,2006,33(12):1-2. 被引量:6
  • 2王全为,李栋,李学艺.基于最优控制的圆度圆柱度误差精确评定[J].太原理工大学学报,2007,38(1):12-14. 被引量:2
  • 3ISO 1101-2004.Geometrical product specificationsgeometrical tolerancing-tolerances of form,orientation,location and run-out[S].2004.
  • 4Venkaiah N,Shunmugam M S.Evaluation of form data using computational geometric techniques-Part II:Cylindricity error[J].International Journal of Machine Tools&Manufacture,2007,47:1237-1245.
  • 5Chou S Y,Sun C W.Assessing cylindricity for oblique cylindrical features[J].International Journal of Machine Tools and Manufacture,2000,20:327-341.
  • 6Lai J,Chen I.Minimum zone evaluation of circles and cylinders[J].International Journal of Machine Tools and Manufacture,1996,36:435-451.
  • 7Zhu L M,Ding H.Application of kinematic geometry to computational metrology:distance function based hierarchical algorithms for cylindricity evaluation[J].International Journal of Machine Tools and Manufacture,2003,43:203-215.
  • 8Sun Y,Wang X,Guo D,et al.Machining localization and quality evaluation of parts with sculptured surfaces using SQP method[J].International Journal of Machine Tools and Manufacture,2009,42:1131-1139.
  • 9Wen X L,Huang J C,Sheng D H,et al.Conicity and cylindricity error evaluation using particle swarm optimization[J].Precision Engineering,2010,34:338-344.
  • 10Zhu Xiangyang, DING Han, WANG M Y. Form error evaluation: An iterative reweighted least squares algorithm[J].Transaction of the ASME: Journal of Manufacturing Science and Engineering, 2004,126(8):535-541.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部