摘要
考虑Rd(d≥1)上随机过程{X(t)}的小扰动{Xε(t)},其中{X(t)}和{Xε(t)}分别满足随机微分方程dX(t)=b(X(t),Z(t))dt和dXε(t)=b(Xε(t),Z(t))dt+εdB(t),这里{Z(t)}是一个有限状态马氏过程.应用大偏差方法,给出了当扰动趋于零时,{Xε(t)}的平均越出时间的渐近估计.
In this paper, small perturbations {X ε(t)} of a stochastic process {X(t)} in R d(d≥1) are considered, where {X(t)} and {X ε(t)} satisfy stochastic differential equations d X(t)=b(X(t),Z(t)) d t and d X ε(t)=b(X ε(t),Z(t)) d t+ε d B(t) , respectively, and { Z(t) } is a finite state Markov process. Applying the large deviation method, the asymptotics of mean exit time for {X ε(t)} as the perturbations tend to zero is obtained.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1999年第1期49-55,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)