摘要
通过球壳微元初始屈曲的微分几何分析,推导出一组新的精确的屈曲分支方程,并且应用Galerkin变分法研究铰支球壳承受环向剪切力时的整体稳定性,构造了接近分支点变形状态的屈曲模式,首次求得了从扁球壳到半球壳大范围内的扭转屈曲临界特征值,临界荷载强度和临界应力·
By the aid of differential geometry analysis on the initial buckling of shell element, a set of new and exact buckling bifurcation equations of the spherical shells is derived. Making use of Galerkin variational method, the general stability of the hinged spherical shells with the circumferential shear loads is studied. Constructing the buckling mode close to the bifurcation point deformations, the critical eigenvalues, load intensities and critical stresses of torsional buckling ranging from the shallow shells to the hemispherical shell are obtained for the first time.
出处
《应用数学和力学》
EI
CSCD
北大核心
1999年第4期405-410,共6页
Applied Mathematics and Mechanics
关键词
球壳
屈曲分支方程
环向剪切力
环向剪切剪曲
spherical shell
buckling bifurcation equation
circumferential shear load
eigenvalue
buckling critical value