摘要
利用拓扑度理论,给出了边值问题u″(t)+λa(t)f(u(t))=0,0<t<1,αu(0)-βu′(0)=0,γu(1)+δu′(1)=0两个非负解的存在性结果,这里允许a在t=0和t=1处有奇性.当f在0点超线性增长而在+∞处次线性增长时,必存在σ>0,对σ<λ<+∞时,上述问题至少有两个不恒为零的非负解.
Using topological degree theory, we obtain existence of nonnegative solutions of singular boundary value problem u″(t)+λa(t)f(u(t))=0, 0<t<1 αu(0)-βu′(0)=0, γu(1)+δu′(1)=0, where a may be singular at both end points t =0 and t =1. If f is suplinear at u =0 and f is sublinear at u=+∞, there must exist positive number σ , for σ<λ<+∞, the above problem have at least two unidentically vanishing nonnegative solutions.
出处
《纯粹数学与应用数学》
CSCD
1999年第1期44-48,共5页
Pure and Applied Mathematics
关键词
奇异边值问题
非负解
存在性
锥
不动点指数
singular boundary value problem
nonnegative solution
existence cone fixed point index.