摘要
介绍了采用模糊神经网络模型进行振动主动控制的压电自适应桁架结构设计、应用及实验结果.设计了一种具有自适应结构技术的压电主动构件结构,并提出了具有5层结构能够自调整隶属函数的模糊神经网络控制模型.为了验证控制模型的有效性,搭建了配置压电主动构件的双跨桁架结构试验平台,通过检测误差信号,由模糊神经网络控制模型确定主动构件的驱动输出.试验结果证实了模糊神经网络控制模型在振动抑制方面的有效性.
The design, implementation and experimental results of active intelligent vibration control of an adaptive truss structure are presented. An adaptive truss structure with self-learning active vibration control system is developed. A fuzzy-neural-network(FNN) controller with adaptive membership functions is presented. The experimental setup of a two-bay truss structure with active members is constructed, and the FNN controller is applied to suppress the vibration of the truss. First, the output of the accelerometer is sensed as an error signal for activating the adaptation of the weights of the controller; and then, the control command signal is calculated based on the FNN inference mechanism for driving the active members. Experimental results demonstrate that the active FNN controller can effectively reduce the truss vibration.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2010年第7期943-947,共5页
Control Theory & Applications
基金
国家自然科学基金资助项目(59905016)
关键词
自适应桁架结构
振动控制
模糊神经网络
adaptive truss structure
vibration control
fuzzy neural network