期刊文献+

无穷网络流的顶点控制 被引量:1

Vertex control of flows in infinite networks
下载PDF
导出
摘要 本文研究了无穷网络上的传输过程并在一个顶点对其进行控制.描绘了所有的可控状态,并在最大可控的顶点给出了卡尔曼型判断标准.本文的结果是近期一个相似结果的推广. The transmission process in a network with different velocities is studied by imposing the control on a single vertex. All possible reachable states are described and a Kalman-type criterion is provided for those vertices in which the problem is maximally controllable. Our results are the extension of the similar existing ones.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第8期1103-1107,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(10671126)
关键词 网络流 算子半群 边界控制 最大可控空间 flows in network operator semigroup boundary control maximally controllable space
  • 相关文献

参考文献3

  • 1Britta Dorn. Semigroups for flows in infinite networks[J] 2008,Semigroup Forum(2):341~356
  • 2Eszter Sikolya. Flows in networks with dynamic ramification nodes[J] 2005,Journal of Evolution Equations(3):441~463
  • 3Marjeta Kramar,Eszter Sikolya. Spectral properties and asymptotic periodicity of flows in networks[J] 2005,Mathematische Zeitschrift(1):139~162

同被引文献12

  • 1郑福,李欣,徐双双.三边树形弦网络的适定性和正则性[J].系统科学与数学,2013,33(12):1468-1479. 被引量:3
  • 2郑福,李东.具有两类修复设备的可修系统解的半离散化[J].渤海大学学报(自然科学版),2006,27(4):334-339. 被引量:4
  • 3郭宝珠,柴树根.无穷维线性系统理论[M].北京:科学出版社,2012.
  • 4Liu K S,Huang F L,Chen G.Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage[J].SIAM Journal on Control and Optimization,1989,49(6):1694-1707.
  • 5Dager R.Observation and control of vibrations in tree-shaped networks of strings[J].SIAM Journal on Cortrol and Optimization,2005,43(2):590-623.
  • 6Schmidt E J.On the modelling and exact controllability of net-works of vibrating strings[J].SIAM Journal on Cortrol and Optimization,1992,30:229-245.
  • 7Zhang Y X and Xu G Q.Exponential and super stability of a wave network[J].Acta Appl.Math.,2013,124:19-41.
  • 8Han z J,XU G Q.Output feedback stabilisation of a tree-shaped network of vibrating strings with non-collocated observation[J].International Journal of Control,2011,84(3):458-475.
  • 9Guo B Z,Xu C Z,Hammouri H.Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation[J].ESAIM:Control,Optimization and Calculus of Variations XVII,122,2012,18:22-35.
  • 10Ervedoza S,Zuazua E.On the numerical approximation of exact controls for waves[M].Springer Briefs in Mathematics,2013.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部