期刊文献+

具有通信时延的离散时间二阶多个体网络的一致性问题 被引量:8

Consensus problem of discrete-time second-order multi-agent network with communication delay
下载PDF
导出
摘要 针对具有通信时延的离散时间二阶多个体系统的一致性问题,采用了具有静态领导者的一致性算法.根据广义Nyquist判据和Gerschgorin圆盘定理,得到了系统渐近收敛到领导者状态的充分条件.在个体与领导者构成的连接拓扑满足一定连通性的前提下,该充分条件是分散形式的,与控制参数、邻居个体之间的连接权值相关,而与通信时延大小无关.仿真结果证明了结论的正确性. The consensus algorithm with a static leader is proposed to solve the consensus problem of the discrete-time second-order multi-agent systems with communication delay. By the generalized Nyquist criterion and the Gerschgorin disc theorem, the sufficient conditions are obtained for the system to converge to the leader's states asymptotically. With the interconnection topology composed of the agents and the leader that satisfies certain connectivity conditions, the sufficient conditions are decentralized, dependent on the control parameters and the weights between the neighboring agents, and independent of the communication delay. Numerical examples are provided to illustrate the correctness of the results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第8期1108-1112,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(60804013)
关键词 二阶多个体系统 一致性问题 通信时延 second-order multi-agent systems consensus problem communication delay
  • 相关文献

参考文献1

二级参考文献10

  • 1Ren W, Beard R W, Atkins E M. A survey of consensus problems in multi-agent coordination [C]//Proceeding of 2005 American Control Conference. Portland, OR, USA, 2005: 1859-1864.
  • 2Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transitions in a system of self-driven particles [J]. Physical Review Letters, 1995, 75 (6): 1226 - 1229.
  • 3Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Trans on Automatic Control, 2003, 48 (6): 988 - 1001.
  • 4Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Trans on Automatic Control, 2004, 49 (9): 1520 - 1533.
  • 5Moreau L. Stability of continuous-time distributed consensus algorithms [C]//Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas, 2004: 3998 - 4003.
  • 6Wang W, Slotine J-J E. Contraction analysis of timedelayed communications and group cooperation [J]. IEEE Trans on Automatic Control, 2006,51 (4): 712 - 717.
  • 7Bliman P A, Ferrari-Trecate G. Average consensus problems in networks of agents with delayed communications [C]//Proceeding of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, 2005:7066 - 7071.
  • 8Lestas I, Vinnicombe G. Scalable robustness for consensus protocols with heterogeneous dynamics [CD]// Proceedings of the 16th IFAC World Congress. Prague, 2005 : ( MO-A10-TO/3 ).
  • 9Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles [J]. IEEE Trans on Automatic Control, 2005,50 (1): 121-127.
  • 10Desoer C A, Wang Y T. On the generalized Nyquist stability criterion [J]. IEEE Trans on Automatic Control, 1980,25(2) : 187 - 196.

共引文献5

同被引文献75

  • 1李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104. 被引量:52
  • 2FAX A J, MURRAY R M. Information flow and cooperative control of vehicle formations [J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1465 - 1476.
  • 3TAHBAZ-SALEHI A, JADBABAIE A. A necessary and sufficient condition for consensus over random networks [J]. IEEE Transactions on Automatic Control, 2008, 53(3): 791 - 795.
  • 4TAHBAZ-SALEHI A, JADBABAIE A. Consensus over ergodic sta- tionary graph processes [J]. IEEE Transactions on Automatic Control, 2010, 55(1): 230 - 235.
  • 5REN W. Multi-vehicle consensus with a time-varying reference state [J]. Systems & Control Letters, 2007, 56(7): 474 -483.
  • 6WANG L, XIAO F. Finite-time consensus problems for networks of dynamic agents [J]. 1EEE Transactions on Automatic Control, 2010, 55(1): 950 - 955.
  • 7REN W. Consensus tracking under directed interaction topologies: Algorithms and experiments [J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 230- 237.
  • 8REYNOLDS C. Flocks, herds, and schools: A distributed behavioral model [J]. Computer Graphics, 1987, 21(4): 25 - 34.
  • 9VICSEK T, CzIROK A, BEN-JACOB E, et al. Novel type of phase transitions in a system of self-driven particles [J]. Physical Review Letters, 1995, 75(2): 1226 - 1229.
  • 10JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mo- bile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control, 2003, 48(6): 988 - 1001.

引证文献8

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部