期刊文献+

群活性与粒子群优化的稳定性分析 被引量:8

Stability analysis of particle swarm optimization using swarm activity
下载PDF
导出
摘要 在探讨粒子轨迹的随机过程的基础上,用根轨迹特征值的谱半径来描述粒子群优化的PSO动态系统的稳定性区域;提出并结合实例用群活性刻画了PSO稳定区域中不同参数区间上群行为的动态特征,利用不动点技术通过数值实验描绘出PSO群活性谱及性能图,解释了先前一些文献上提出的典型参数集之所以能够取得满意性能的理由,利用PSO稳定三角中线提出保证PSO收敛性能的参数设置指导策略. In the analysis of particle swarm optimization(PSO), particle trajectories are considered stochastic processes, and the stability region of the PSO dynamic system is illustrated by the eigenvalues and the spectrum radius. Through practical applications, we propose a new term, swarm activity, to characterize the dynamic behaviors of the swarm with different parameters in the stability region. By applying the fixed-point technique, we depict the swarm activity spectralbased performance maps of the PSO from numerical experiments. These maps account for the typical parameter sets put forth in existing literature for realizing desirable performances, and reconfirm the strategies of using the median of PSO stability triangle in adjusting parameters to ensure the convergence of the PSO.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第10期1411-1417,共7页 Control Theory & Applications
基金 国防预研基金资助项目(113020102) 长江学者和创新团队发展计划资助项目(IRT0520) 国家自然科学基金资助项目(61075049) 安徽省自然科学基金资助项目(090412261X 090412045)
关键词 全局优化 粒子群优化 群活性 确定性稳定性 global optimization particle swarm optimization (PSO) swarm activity deterministic stability
  • 相关文献

参考文献4

二级参考文献22

  • 1彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of lEEE International Conference on Neural Networks. New York: IEEE Press, 1995:1042 - 1048.
  • 3KENNEDY J, EBERHART R C, SHI Y. Swarm Intelligence[M]. San Francisco: Morgan Kaufman Publishers, 2001.
  • 4HUI P, LING W, BO L. Particle swarm optimization for function optimization in noisy environment[J]. Applied Mathematics and Computation, 2006, 181(2): 908- 919.
  • 5VISAKAN K, KIRUSNAPILLAI S. Stability analysis of the particle dynamics in particle swarm optimizer[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 245- 255.
  • 6VAN DEN BERGH F B. Ananalysis ofparticle swarm optimizers[D]. SouthAfrica: University of Pre toria, 2002.
  • 7SOLIS E WETS R. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981.6(1): 19 - 30.
  • 8PARROTT D, LI X. Locating and tracking multiple dynamic optima by a particle swarm model using speciation[J]. IEEE Transactions on Evolutionary Computation. 2006, 10(4): 440 -458.
  • 9[1]PARSOPULOS K E,VRAHATIS M N.Reccent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002(1):235-306.
  • 10[3]KENNEDY J,EBERHART R C.Particle swarm optimization[C]//IEEE.Proceedings of the 1995 IEEE International Conference on Neural Networks.Piscataway:IEEE service center,1995:1942-1948.

共引文献51

同被引文献95

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部