期刊文献+

结合邻域信息的带钢表面明暗域缺陷图像配准 被引量:1

Strip Steel Surface Bright/Dark Field Defect Image Registration Combined with Neighborhood Information
下载PDF
导出
摘要 为解决带钢表面明暗域缺陷图像检测方式采集到的同一位置处的图片之间存在位移及旋转问题,同时考虑到因板带振动及现场生产环境造成的噪声影响,提出采用结合邻域内像素间空间与灰度信息的互信息配准方法.在互信息配准计算中图像中每个像素的灰度值由其邻域内像素的灰度值按照距离及灰度变化关系分配不同的权值共同得到.实验证明,该方法的配准精度完全可满足带钢缺陷检测需求,有效减弱了噪声对配准精度的影响,为带钢表面缺陷识别及质量评价奠定了基础. To get rid of the displacement and rotation as shown in the two strip steel surface defect images at the same position,which are obtained by the detection system for both bright and dark fields,and denoise the images detected during strip vibration and in-situ production process,a new mutual-information-based registration of images was proposed combining the pixel spaces in neighborhood with grey level data. During the computation of the mutual-information-based registration of images,the grey level of every pixel is determined together with the grey level of a pixel in its neighborhood,which distributes the different weights according to the relationship between distance and grey level. Experimental results showed that the accuracy of the new method of registration can meet fully the requirements for strip steel defect detection and reduce effectively the impact of noise on registration accuracy,thus laying a foundation to identify the strip surface defects and evaluate the strip quality.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1619-1622,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50574019) 国家高技术研究发展计划项目(2008AA04Z135) 中央高校基本科研业务费专项资金资助项目(N090603004)
关键词 带钢 明暗域 缺陷检测 邻域信息 互信息 图像配准 strip steel bright/dark field defect detection neighborhood information mutual information image registration
  • 相关文献

参考文献9

  • 1陈洁,付冬梅,刘燕.基于相似三角形匹配的红外与可见光图像配准方法[J].激光与红外,2010,40(2):215-218. 被引量:13
  • 2丁海勇,卞正富.基于Powell算法的亚像元配准方法(英文)[J]光子学报,2009(12).
  • 3张洪涛,段发阶,丁克勤,叶声华.带钢表面缺陷视觉检测系统关键技术研究[J].计量学报,2007,28(3):216-219. 被引量:24
  • 4Van de Kraats E B,Penney G P,Tomazevic D,et al.Standardized evaluation methodology for2-D-3-D registration. IEEE Transactions on Medical Imaging . 2005
  • 5Muehlemann M.Standardizing defect detectionfor the surface inspection of large web steel. . 2000
  • 6Tao G Z,He R J,Datta S,Ponnada A.et al.Symmetric inverse consistent nonlinear registration driven by mutual information. Computer Methods . 2009
  • 7Hong H,Lee J,Yi m Y.Automatic segmentation and registration of lung surfaces in temporal chest CT scans. Lecture Notes in Computer Science . 2005
  • 8Jacquet W,Nyssen E,Bottenberg P,et al.2D i mage registration usingfocused mutual informationfor applicationin dentistry. Computers in Biology and Medicine . 2009
  • 9Wells W,Viola P,Atsumi H,et al.Multi-modal volume registration by maximization of mutual information. Medical Image Analysis . 1996

二级参考文献14

  • 1胡亮,段发阶,丁克勤,叶声华.基于线阵CCD钢板表面缺陷在线检测系统的研究[J].计量学报,2005,26(3):200-203. 被引量:32
  • 2陈桂友,徐胜男,李振华,钟麦英.刚体变换下基于轮廓的多传感器图像配准算法[J].系统工程与电子技术,2007,29(7):1169-1173. 被引量:5
  • 3Harris C, Stephens M. A combined comer and edge detector[ C ]//Proc of 4^th Alvey Vision Conference. Manchester, 1988 : 147 - 151.
  • 4Schmid C, Mohr R, Bauckhage C. Evaluation of interest point detectors [ J ]. International Journal of Computer Vision,2000,37(2) :151 - 172.
  • 5P H S Torr, A Zisserman. Feature based methods for structure and motion estimation[ J ]. Proc of Workshop on Vision Algorithms, 1999:278 - 294.
  • 6Richard Hartley, Andrew Zisserman. Multiple view geometry in computer vision [ M ]. Cambridge: The Press Syndicate of the University of Cambridge, UK,2000.
  • 7文伟.红外图像伪彩色模型的研究与应用[D].北京:北京科技大学,2007.
  • 8章毓晋.图像分割[M].北京:科学出版社,2001..
  • 9Kopineck H J,et al.Automatic Surface Inspection of Continuously and Batch Annealed Cold Rolled Steel Strip[J].MPT,1987,(5):66 - 69.
  • 10Obeso F,Gonzalez J A,Brown A.Intelligent on-line Surface Inspection on a Skinpass[J].Iron and Steel,1997,(10):29 - 35.

共引文献35

同被引文献3

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部