期刊文献+

复杂场景中基于对象的运动目标检测方法 被引量:8

Object-oriented Moving Target Detection in Complex Scenes
下载PDF
导出
摘要 基于像素层面的混合高斯背景建模方法不能很好的解决动态背景中的运动目标检测问题。由于背景像素运动的复杂性,该方法很难将动态背景建入模型,会造成大量的误检。本文在混合高斯背景建模的基础上,通过空域和时域对动态背景产生的误检进行抑制。在空域运用MRF模型和混合高斯模型分别计算像素点的先验概率和类条件概率,通过结合像素点的先验概率和类条件概率完成前景图像的分割,在很大程度上去除了小面积的误检;在时域通过目标的运动持续性,运动显著性和面积变化稳定性三个目标特征过滤大面积的误检。通过实验表明,在保证较高检测精度的情况下,该方法能够在很大程度上抑制动态背景产生的误检。 Pixel-based MOG background modeling is not a good method to deal with moving target detection in dynamic background.It is hard to model the dynamic background in this method due to the complex movement of background pixels.Thus,huge sums of false positives would occur.This paper aims to suppress the false positives in space domain and time domain.In space domain,class-prior probability and class-conditional-probability of a pixel were calculated from MRF model and Mixture of Gaussians(MOG) model.By combining the class-prior probability and class-conditional-probability,foreground segmentation was completed to suppress a majority of false positives of small size.In time domain,three target characteristics were observed:motion constancy,motion saliency and area stabilization.The result of experiments show that the false positives on dynamic background could be suppressed to a great extent,meanwhile,good detecting accuracy is ensured.
出处 《光电工程》 CAS CSCD 北大核心 2010年第11期1-7,共7页 Opto-Electronic Engineering
基金 四川省科技厅应用基础研究项目(2008ly0115-2) 研究生教育教学改革项目(07xjjg23)
关键词 混合高斯背景建模 运动持续性 运动显著性 面积变化稳定性 pixel-based MOG background modeling motion constancy motion saliency area stabilization
  • 相关文献

参考文献10

  • 1Collins R T,Lipton A J,Kanade T.A system for video surveillance and monitoring[R].VSAM final report,Technical CMU-RI-TR-00-12.Pittsburgh:Robotics Institute,Carnegie Mellon University,2000:1-68.
  • 2Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins,CO,USA,June 23-25,1999:23-25.
  • 3Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by codebook construction[C] //International Conferrence on Image Processing,Singapore,Oct 24-27,2004,5:3061-3064.
  • 4Mohamad Hoseyn Sigari,Mahmood Fathy.Real-time Background Modeling/Subtraction using Two-Layer Codebook Model[C] //Proceedings of International Multiconference of Engineers and Computer Scientists,HongKong,China,March 19-21,2008,1:10-21.
  • 5Elgammal A,Harwood D,Davis L.Non-parametric Model for Background Subtraction[C] //European Conference of Computer Vision,Dublin,April 18,2000,1843:751-767.
  • 6Mittal A,Paragios N.Motion-Based Background Bubtraction using Adaptive Kernel Densify Estimation[C] //The IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington,June 27-July 2,2004,2:302-309.
  • 7Li L Y,Huang W M,Irene Y H,et al.Foreground Object Detection from Videos Containing Complex Background[C] //The eleventh ACM international conference on multimedia,Berkeley,CA,USA,2003:2-10.
  • 8Li Y L,Huang W M,Irene Y H,et al.Statistical Modeling of Complex Backgrounds for Foreground Object Detection[J].IEEE Transactions on image processing(S1057-7149),2004,13(11):1459-1472.
  • 9Heikkila M,Pietikainen M.A Texture-Based Method for Modeling the Background and Detecting Moving Objects[J].IEEE Transactious on Pattern Analysis and Machine Intelligence(S0162-8828),2006,28(4):657-662.
  • 10Javed O,Shah M.Tracking and Object Classification for Automated Surveillance[C] //European Conference on Computer Vision,Copenhagen,2002:343-357.

同被引文献59

  • 1李宏壮,张振铎,刘欣悦,赵勇志,李洪文,王建立.一款宽光谱鱼眼镜头的设计[J].光子学报,2012,41(11):1312-1316. 被引量:12
  • 2李颖宏,熊昌镇,尹怡欣,刘亚利.一种基于边缘高斯混合模型的运动目标检测方法[J].系统仿真学报,2009,21(S1):72-74. 被引量:6
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Heisele B, Kressel U, Ritter W. Tracking non-rigid, moving objects based on color cluster flow [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Puerto Rico, June 17-19, 1997. IEEE Computer Society, 1997: 257-260.
  • 5MIKOLAJCZYK K, SCHMID C. Scale and Affine Invariant Interest Point Detectors [J]. International Journal of Computer Vision(SO920-5691), 2004, 60(1): 63-86.
  • 6Lowe D G Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110.
  • 7SUN D, ROTH S, BLACK M J. Secrets of optical flow estimation and their principles [C]// IEEE Computer Society Conference on Computer Vision and Pattern Reeognition, San Francisco, California, USA, June 13-18, 2010. IEEE Computer Society, 2010, 6: 2432-2439.
  • 8PENG X, BENNAMOUN M, MA Q, et al. Drift-correcting template update strategy for precision feature point tracking [J].Image andVision Computing(S0262-8856), 2010, 28(8): 1280-1292.
  • 9SHOICHI A, TAKASHI M, NAOKAZU Y, et al. Real-time tracking of multiple moving object contours in a moving camera image sequence [J]. IEICE Transaetions on Information and Systems (S0916-8532), 2000, 83(7): 1583-1591.
  • 10THOMPSON W B, MUTCH K M, BERZINS V A. Dynamic occlusion analysis in optical flow fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2009, PAMI-7(4): 374-383.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部