期刊文献+

基于RBF网络的光学字符提取与识别新方法 被引量:9

A Novel Approach for Character Feature Extraction and Recognition Based on RBF Neural Network
下载PDF
导出
摘要 提出了一种新的基于统计与模糊隶属度的光学字符特征提取方法,可以快速准确地识别受噪声污染的光学字符。相比传统算法,本文方法的特征空间区分度更高,最小类间距离扩大33.2%以上。应用在径向基函数(Radical Basis Function,RBF)神经网络中,在字体字号变化且有背景噪声污染的影响下,识别率高达99%以上,且相比直方图投影法提速75%。理论分析与实验结果表明,与传统方法相比,该算法抗噪能力更强、模式区分度更高、时空复杂度更低,更简约、更全面地覆盖了字符的特征,应用范围广。已应用于实际系统,取得很好的实验结果。 To recognize optical character with noise pollution rapidly and accurately,a novel approach for character feature extraction based on statistics and fuzzy membership is proposed.Compared with traditional method,this approach has a higher degree of differentiation in feature space increasing 33% of minimum inter-class distance.Applied in Radical Basis Function(RBF) neural network,under the influence of different font size and image background noise pollution,character recognition rate is up to 75%.Theoretical analysis and experimental results show that,compared with traditional methods,this approach achieves a better anti-noise performance,greater degree of differentiation and lower time and space complexity.It can be simpler,more comprehensive coverage characters' features with wide application.This approach has been applied to the actual system and achieves good results.
出处 《光电工程》 CAS CSCD 北大核心 2010年第11期145-150,共6页 Opto-Electronic Engineering
基金 港关键领域重点突破项目(091683)
关键词 特征提取 隶属度 RBF 神经网络 光学字符识别 feature extraction membership degree RBF neural network optical character recognition
  • 相关文献

参考文献9

二级参考文献27

  • 1仝朝阳,石教英.一种面向模式分类的修正的ART1神经网络[J].计算机学报,1995,18(9):671-677. 被引量:7
  • 2乔立岩,彭喜元,马云彤.基于遗传算法和支持向量机的特征子集选择方法[J].电子测量与仪器学报,2006,20(1):1-5. 被引量:24
  • 3路小波,凌小静,刘斌.基于组合特征的车牌字符识别[J].仪器仪表学报,2006,27(7):698-701. 被引量:11
  • 4孙即样.现代模式识别[M].北京:国防科技大学出版社,2002.
  • 5Bokser M.Omnidocument teehnologies[J].Proc IEEE,2004,80.
  • 6Khotanzad A,Hong Y H.Invariant image reognition by Zernike moments[J].IEEE Trans on Pattern Anal Mach Intell,2006,12(5).
  • 7Fukunaga K.lntroduetion to statistical pattern recognition[M].New York:Academic Press,2002.
  • 8舒宁.模式识别的理论与方法[M].武汉:武汉大学出版社,2001.
  • 9AVCI E.An optimum feature extraction method for texture classification[J].Expert Systems Application,2009,36:6036-6034.
  • 10GAURI S K.Feature-based recognition of control chart patterns[J].Computers & Industrial Engineering,2006,51:726-742.

共引文献17

同被引文献75

引证文献9

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部