期刊文献+

区间值集函数变差的性质

Some properties of the variations of interval value set functions
下载PDF
导出
摘要 为了解决不确定环境中的决策问题,采用理论分析的方法,将决策者的风险偏好引入到区间数的运算中,提出基于风险因子的区间数运算法则,在此运算法则基础上,定义了区间值集函数的变差,研究了区间值集函数不交变差的零零可加性,零可加性,穷竭性,及从下连续性等基本性质。结果表明:定义的区间值集函数的变差是对经典测度论中不交变差的自然推广,对不确定环境中的决策及建立模糊测度具有很强的指导意义。 In order to deal with the decision-making under uncertainties,the study generalizes algebraic operation to closed interval based on risk index of the decision making. Subsequently,the disjoint variation of the interval-valued set functions is established. The study will discuss some basic properties of the disjoint variation,such as (null-) null-additivity,exhaustivity,and continuity,etc. The results show that the definition of disjoint variation of interval-valued set functions is a natural extension of the disjoint variation of the classical measure theory. The study is of significance to solve uncertain problems.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2010年第5期729-732,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(10961002/A011702)
关键词 区间值集函数 不交变差 零可加 穷竭性 风险因子 interval value set function disjoint variation null-additivity exhaustivity risk index
  • 相关文献

参考文献7

  • 1冯媛,杨立兴.T_∞-测度分解定理的进一步讨论(英文)[J].模糊系统与数学,2007,21(6):88-95. 被引量:3
  • 2Zhang Q.Some properties of the variations of non-additive set functions I. Fuzzy Sets and Systems . 2001
  • 3Zhang Q.Some properties of the variations of non-additive set functions II. Fuzzy Sets and Systems . 2001
  • 4Butnariu,D.,Klement,E. P. Triangular Norm/based Measures and Games with Fuzzy Conditions . 1993
  • 5Murofushi T,Sugeno M,Machida M.Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets and Systems . 1994
  • 6Zhang Q,Xu Y,Du W.Lebesgue decomposition theorem forσfinite signed fuzzy measures. Fuzzy Sets and Systems . 1999
  • 7U.Hohle.Commutative, residuated l-monoids. Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory . 1995

二级参考文献20

  • 1Frank M D. On the simulataneous associativity of F(x,y) and x+y-F(x,y)[J]. Aequations Math. ,1979, 19:194-226.
  • 2Grabisch M, Murofushi T,Sugeno M. Fuzzy measures and integrals: theory and application[M]. New York: Physic-Verlag, 2000.
  • 3Halmos P R. Measure theory[M]. New York..Van Nostrand-Reinhold,1950.
  • 4Klement E P. Fuzzy a-algebras and fuzzy measurable functions[J]. Fuzzy Sets and Systems, 1980,4:83-93.
  • 5Klement E P. Characterization of finite fuzzy measures using Markoff-kernels[J]. J. Math. Anal. Appl. , 1980, 75:330-339.
  • 6Klement E P. Construction of fuzzy a-algebras using triangular norms[J]. J. Math. Anal. Appl. ,1982,85: 543-565.
  • 7Klement E P. Characterization of fuzzy measures constructed by means of triangular norms [J]. J. Math. Anal. Appl. ,1982,86:345-358.
  • 8Menger K. Statistical metric spaces[J]. Proc. Nat. Acad. Sci. USA,1942,28:535-537.
  • 9Mesiar R. Fundamental triangular norm-based tribes and measures[J]. J. Math. Anal. Appl. ,1993,177:633-640.
  • 10Mesiar R,Navara M. Ts-tribes and Ts-measures[J]. J. Math. Anal. Appl. ,1996,201:91-102.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部