期刊文献+

改进蚁群算法结合BP网络用于入侵检测 被引量:1

Improved ant colony algorithm and BP network for intrusion detection
下载PDF
导出
摘要 针对用BP神经网络进行入侵检测时权值难以确定的问题,提出一种基于改进蚁群算法与BP网络的入侵检测方法。基于蚁群算法构建解特点,正反馈自催化机制和分布式计算机制和BP网络局部精确搜索的特性,将蚁群算法和BP算法有机结合,利用蚁群算法优化BP网络,并对蚁群算法进行改进。通过KDD99CUP数据集分别对基于不同算法集合的BP神经网络进行了仿真实验,结果表明:改进算法收敛速度快,迭代次数较少,可在一定程度上提高入侵检测系统的准确率。 This paper presents an intrusion detection method based on an improved ant colony algorithm and an optimized BP network. According to the construction characteristics of an ant colony algorithm,and the characteristics of positive feedback from the catalytic mechanism,the distributed computer system and the local search of BP network,an organic combination of BP algorithm and an ant colony algorithm is achieved to optimize the BP network using an ant colony optimization algorithm. In turn the ant colony algorithm is also improved. Using KDD99 CUP data set,the BP neural networks based on different algorithms are simulated. The simulation results show that the faster convergence of the algorithm,the less number of iterations,and the improvement on the accuracy of intrusion detection systems.
作者 范瑛
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2010年第5期966-969,共4页 Journal of Liaoning Technical University (Natural Science)
关键词 入侵检测 BP神经网络 网络安全 蚁群算法 信息安全 intrusion detection BP neural network network security ant colony algorithm information security
  • 相关文献

参考文献14

二级参考文献39

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2田大新,刘衍珩,李永丽,唐怡.数据包过滤规则的快速匹配算法和冲突检测[J].计算机研究与发展,2005,42(7):1128-1135. 被引量:14
  • 3田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 4CHITTUR A. Model generation for an intrusion detection System using genetic algorithms [J/OL]. http://wwwl, cs. col-umbia, edu/ids/publications/gaids-thesis01, pdf, 2005.
  • 5LI Wei. Using Genetic Algorithm for network intrusion detection [ C ]// Proceedings of United States Department of Energy Cyber Security Group 2004 Training Conference. Kansas : [ s. n. ] ,2004:24 - 27.
  • 6PILLAI M M, ELOFF J H P, VENTER H S. An approach to implement a network intrusion detection system using genetic algorithms [ C ]//Proceedings of SAICSIT 2004. [ S. L. ] : South Africa: South African Institute for Computer Scientists and Information Technologists, 2004:221 -228.
  • 7GOMEZ J, DASGUPTA D. Evolving fuzzy classifiers for intrusion detection [ C ]//Proceedings of the 2002 IEEE Workshop on Information Assurance. NY: West Point, 2002 : 68 - 75.
  • 8MIDDLEMISS M, DICK G. Feature selection of intrusion detection data using a hybrid genetic algorithm/ KNN approach [ C]//Design and application of hybrid intelligent systems. The Netherlands:IOS Press Amsterdam, 2003:519-527.
  • 9LU Wei, TRAORE I. Detecting new forms of network intrusion using genetic programming [ J]. Computational Intelligence, 2004, 20 : 475 - 494.
  • 10KDD99. KDD99 cup dataset[ DB/OL]. http://kdd. ics. uci. edu/databases/kddcup99, 1999.

共引文献179

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部