摘要
本文讨论一类具有空间扩散的生态—流行病模型在齐次Neumann边界条件下解的存在唯一性和一致有界性,并由线性化方法证明了该模型非负平衡点的局部渐近稳定,构造Lyapunov泛函证明半平凡平衡点的全局渐近稳定.
In this paper,the global existence,uniqueness and uniform boundedness of positive solutions to a predator-prey(SI) model of predator with epidemic are proved under homogeneous Neumann boundary condition.By using linearization,we obtain the sufficient condition of locally asymptotical stability of the equilibria point.Furthermore,by Lyapunov function we obtain the sufficient condition of globally asymptotical stability of the trivial equilibria point.
出处
《应用数学》
CSCD
北大核心
2010年第4期796-801,共6页
Mathematica Applicata