摘要
研究营养基被污染且脉冲扰动的时滞Chemostat模型.利用离散动力系统频闪映射,得到了微生物种群灭绝周期解,且它是全局吸引的;利用时滞脉冲微分方程理论,得到了系统持久的条件.结论提示了时滞增长反应对Chemostat的产量起着重要的作用.
In this paper,a delayed chemostat model with impulsive input the polluted nutrient is considered.Using the discrete dynamical system determined by the stroboscopic map,we obtain a microorganism-extinction periodic solution.Further,it is globally attractive.The permanent condition of the investigated system is also obtained by the theory of impulsive delay differential equation.Our results reveal that the delayed response in growth plays an important role on the outcome of the chemostat.
出处
《应用数学》
CSCD
北大核心
2010年第4期861-869,共9页
Mathematica Applicata
基金
Supported by National Natural Science Foundation of China (10961008)
the Nomarch Foundation of Guizhou Province (2008035)
the Science Technology Foundation of Guizhou(2008J2250)