期刊文献+

基于利率的期限结构模型的债券价格过程的分形性质(英文)

Fractal Property of the Bond-price Process in Term Structure Models for Interest Rates
下载PDF
导出
摘要 本文研究了由文[4]( KENNEDY D P.The term structure of interest rates as a Gaussian randomfield[J] .Mathematical Finance ,1994 ,4(3) :247-258 .)提出的利率期限结构模型下的债券价格过程,并获得了债券价格曲线是一条Hausdorff维数为3/2的分形曲线. In this paper,we study the bond-price process in the term structure model of interest rates proposed by Ref.[4](KENNEDY D P.The term structure of interest rates as a Gaussian random field[J].Mathematical Finance,1994,4(3):247-258.) and obtain that the bond-price curve is a fractal with Hausdorff dimension 3/2.
作者 余东 张娜
出处 《应用数学》 CSCD 北大核心 2010年第4期890-896,共7页 Mathematica Applicata
基金 Supported by the Office of Hubei Province Key Laboratory of Systems Science in Metal-lurgical Process (C201008)
关键词 债券价格过程 分形性质 期限结构模型 Fractal property Bond-price process Term structure models
  • 相关文献

参考文献6

  • 1HEATH D C,JARROW R A,MMORTON A.Bond pricing and the term structure of interest rates:A discrete time approximation[J].Journal of Financial and Quantitative Analysis,1990,25(4):419-440.
  • 2HEATH D C,JARROW R A,MORTON A.Bond pricing and the term structure of interest rates:A new methodology for contingent claims valuation[J].Econometrica,1992.60(1):77-105.
  • 3HOT S Y,LEE S-B.Term structure movements and pricing interest rate contingent claims[J].J.Finance,1986,41(5):1011-1029.
  • 4KENNEDY D P.The term structure of interest rates as a Gaussian random field[J].Mathematical Finance,1994,4(3):247-258.
  • 5KONO N.Recent development on random fields and their sample paths part Ⅲ:Self-similar processes[J].Soochow Journal of Mathematics,1991,17(2):327-361.
  • 6JIRO Akahori,SHIGEYOSHI Ogawa,SHIZO Watanabe.Stochastic Processes and Applications to Mathematical Finance[M].Singapore:World Scientific Publishing Co.Pte.Ltd,2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部