摘要
讨论了在任意输入下的某类非线性系统的稳定性问题,该类系统是由带有强制项的非线性微分方程所描述。利用积分算子将非线性微分方程转换成为非线性积分方程后,导出了与微分方程相对应的不级数(Volterra级数),进而通过研究这个幂级数的收敛性找出了与之对应的非线性系统的稳定域。文中以Duffing方程为例进行了讨论。
This report discusses the stability problem of non-linear systems under arbitrary input disturbances. The system is described by a non-linear differential equation with forcing term. This equation is solved by a type of power series (Volterra series) whichgives output explicitly in terms of input. Proof of convergence of this series gives criteria for stability of the system.