期刊文献+

多传感器粒子滤波融合跟踪算法 被引量:2

Multi-sensor Fusion Tracking Algorithm Based on Particle Filter
下载PDF
导出
摘要 对于非线性非高斯环境中的多传感器分布式状态估计问题,提出了一种基于二阶中心差分粒子滤波方法的融合跟踪算法。通过对量测方程的非线性分析,利用粒子滤波器计算目标状态估计值,以在线自适应加权融合算法的方式得到系统最优估计。仿真结果表明,与采用扩展卡尔曼滤波的方法相比,该算法具有更高的估计精度。 In order to solve the distributed multi-sensor state estimation problem of non-Gaussian nonlinear system,a fusion tracking algorithm based on second-order central difference particle filter is proposed. It uses particle filter to calculate state estimated values by the nonlinear analysis of measurement equation,and then the system optimal estimation is obtained in the adaptive weighted fusion algorithm way. The simulation results show that compared with the extended Kalman filter,the proposed algorithm improves the estimation accuracy.
作者 李龙 秦超英
出处 《科学技术与工程》 2010年第32期7947-7950,7955,共5页 Science Technology and Engineering
关键词 多传感器 分布式 粒子滤波 非线性非高斯 中心差分 multi-sensor distributed particle filter nonlinear non-Gaussian central difference
  • 相关文献

参考文献11

  • 1关小杰,陈军勇.无线传感器网络中基于量化观测的粒子滤波状态估计[J].传感技术学报,2009,22(9):1337-1341. 被引量:3
  • 2程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:100
  • 3石勇,韩崇昭.二阶中心差分粒子滤波算法[J].西安交通大学学报,2008,42(4):409-413. 被引量:12
  • 4胡士强,敬忠良,胡洪涛,田宏伟,李建勋.多传感器稳健融合跟踪算法[J].上海交通大学学报,2005,39(4):509-512. 被引量:16
  • 5Terwijn B,,Porta J M,Kr se B J A.A particle filter to estimate non-markovian states. Proceedings of the8th International Conference on Intelligent Autonomous Systems . 2004
  • 6Huang S,Dissanayake G.Convergence and consistency analysis for extended Kalman filter-based SLAM. IEEE Trans Robot . 2007
  • 7Rui H,Sachin C P,Lorenz TB.Robust extended Kalman filter based nonlinear model predictive control formulation. Joint48th IEEE Con-ference on Decision and Control and28th Chinese Control Conference . 2009
  • 8Gustafsson F,Gunnarsson F,Bergman N et al.Particle filters for po-sitioning,navigation and tracking. IEEE Transactions on Signal Pro-cessing . 2002
  • 9Djuric P M,Kotecha J H,ZHANG J,et al.Particle filtering:a review of the theory and how it can be used for solving problems in wireless communications. IEEE Signal Processing Magazine . 2003
  • 10KOTECHA J H,DJURIC P M.Gaussian partical filter. IEEE Transactions on Signal Processing . 2003

二级参考文献92

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2宁晓琳,房建成.一种基于UPF的月球车自主天文导航方法[J].宇航学报,2006,27(4):648-653. 被引量:23
  • 3汤琦,黄建国,杨旭东,冯西安.基于粒子滤波的被动多基站跟踪算法(英文)[J].宇航学报,2007,28(2):375-379. 被引量:1
  • 4Viswanathan R and Varshney P K. Distributed Detection with Multiple Sensors. Part T Fundamentals[C]//Proc. of IEEE, 1997,85(1) : 54-63.
  • 5Chen B,Tong L and Varshney P K. Channel-Aware Distributed Detection in Wireless Sensor Networks[J]. IEEE Signal Processing, 2006,23 (4) : 16-26.
  • 6Luo Z Q. Universal Decentralized Estimation in a Bandwidth Constrained Sensor Network [J ]. IEEE Trans. Information Theory, 2005,51 (6) : 2210-2219.
  • 7Ribeiro A and Giannakis G B. Bandwidth-Constrained Distributed Estimation for Wireless Sensor Networks-part Ⅰ:Gaussian Case [ J]. IEEE Trans. Signal Processing, 2006, 54 ( 3 ) : 1131-1143.
  • 8Ribeiro A and Giannakis G R. Bandwidth-Constrained Distributed Estimation for Wireless Sensor Networks-Part Ⅱ: Unknown Probability Density Function [J]. IEEE Trans. Signal Processing, 2006.7,54(7) : 2784-2796.
  • 9Huang M and Dey S. Dynamic Quantizer Design for Hidden Markov State Estimation Via Multiple Sensors with Fusion Center Feedback[J]. IEEE Trans. Signal Processing, 2006,54 (8) :2887-2896.
  • 10Gordon N, Salmond D, Smith A. Novel approach to non-linear non-Gaussian Bayesian state estimation[J]. IEEE Proceedings F, 1993,140(2) : 107-113.

共引文献127

同被引文献17

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部