期刊文献+

Li(2P)+H_2→LiH+H反应转动分辨截面的测定 被引量:1

Experimental Evaluation of Rotationally Resolved Cross-sections for the Li(2P)+H_2→LiH+H Reaction
下载PDF
导出
摘要 利用光学吸收技术,测定了Li(2P)+H→LiH+H的反应截面.仅在LiH基态的ν=0能级才发现有布居.通过吸收谱的测量,确定LiH(0,J)的转动态分布.由速率方程分析得到反应截面σ(J),总的反应截面为所有σ(J)之和,结果是(0.4±0.19)×10-16cm2.LiH(0,J)的分布接近统计分布,转动线吸收强度除以2J+1的对数与J(J+1)成线性关系,由斜率给出转动温度为(1529±0.05)K.观察结果给出了以下的结论:直线反应碰撞机制不适用于Li+H2系统,而插入式的反应机制适用于该系统. Rotationally resolved total cross sections of theLi(2P)+H-LiH+H reaction have been investigated using absorption technique. LiH was found in the v = 0 state. Absorption signals were converted to nascent LiH populations using saturation absorption .Using a rate equation model ,we obtain reaction cross sections σ(J) ,The total cross section is obtained by summing the individual cross sections σ(J). It is (0.4±0.19)×10^-16cm^2.The rotational distributions are close to statistical ones. A plot of the logarithm of the relative absorption intensities of states divided by the degeneracy factor 2J+ 1 against J(J+1) was yielded. The linearity of the plot establishes the Boltzmann form for the rotational distributions. The rotational temperature is (1529 ± 0.05)K. The observation provides indirect evidence that the collinear collision geometry by the harpoon mechanism is not applicable to this system. The insertion mechanism in C2v collision geometry is favored.
出处 《新疆大学学报(自然科学版)》 CAS 2010年第4期461-464,共4页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金资助项目(10664003)
关键词 激光化学 反应碰撞截面 吸收技术 布居分布 Li-H2 Laser chemistry cross section of reactive collision absorption technique population distribution Li-H2
  • 相关文献

参考文献8

  • 1Sayer B, Ferray M, Lozingot J, et al. Experimental investigation of cesium hydride formation by reactive interaction between Cs(TP) and H2 molecules[J]. J Chem Phys, 1981, 75(8):3894:3903.
  • 2Bililign S, Hattaway B C, Robinson T L. Far-wing scattering studies on the reaction Li^* (2P,3P)+H2→LiH(v"= 1,2,J" )+H[J]. J Chem Phys, 2001, 114(16):7052-7058.
  • 3Huang X, Zhao J Z, Xing G Q, et al. The reaction of Cs(82P) and Cs(92p) with hydrogen molecules[J]. J Chem Phys, 1996, 104(4):1338-1343.
  • 4Fan L H, Chen J J, Lin Y Y, et al. Reaction of Rb(5^2D,7^2S) with H2[J]. J Phys Chem, 1999, A103:1300-1305.
  • 5Chang Y P, Hsiao M K , Liu D K, et al. Rotational and vibrational state distributions of Nail in the reactions of Na(4^2S,3^2D,and 6^2S) with H2: Insertion versus harpoon-type mechanism[J]. J Chem Phys, 2008, 128:234-309.
  • 6Chen J J, Hung Y M, Liu D K, et al. Reaction pathway, energy barrier, and rotational state distribution for Li(2^2PJ)+H2 → LiH(X1∑+) +H[J]. J Chem Phys, 2001, 114(21):9395-9401.
  • 7Wernli M, Caruso D, Bodo E, et al. Computing a three-dimensional electronic energy manifold for the LiH + I-I ,-~ Li 4-I-I2 chemical reaction[J]. J Phys Chem, 2009, A113:1121-1128.
  • 8吕磊,吴红萍,张岩文,王大贵,戴康,沈异凡.Li(2P)+H_2→LiH+H反应截面的测量[J].光谱学与光谱分析,2010,30(1):9-12. 被引量:1

二级参考文献13

  • 1Wolnikowski J, Atkinson J B, Supronow J, et al Phys. Rev. , 1982, A25(5) : 2622.
  • 2Vadla C, Horvatic V, Niemac K. Spectrochim. Acta, 2003, B58: 1235.
  • 3Correll T L, Horvatic V, Omenetto N, et al. Spectrochim. Acta, 2006, B61: 623.
  • 4Chang H C, Luo Y L, Lin K C. J. Chem. Phys. , 1991, 94(5): 3529.
  • 5Bililign S, Hattaway B C, Geum N, et al. J. Phys. Chem. , 2000, A104: 9454.
  • 6Fan L H, Chen J J, Liu Y Y, et al. J. Phys. Chem. , 1999, A103: 1300.
  • 7Chang Y P, Hsiao M K, Liu D K, et al. J. Chem. Phys. , 2008, 128: 234309.
  • 8Chen J J, Hung 55 M, Liu D K, et al. J. Chem. Phys. , 2001, 114(21): 9395.
  • 9Hattaway B C, Bililign S, Uhl L, et al. J. Chem. Phys., 2004, 120(4):1739.
  • 10Bililign S, Hattaway B C, Robinson T L, et al. J. Chem. Phys. , 2001, 114(16) : 7052.

同被引文献14

  • 1赖康荣,张刚台,袁强华,崔秀花,戴康,沈异凡.Rb-Rb光学碰撞精细结构分支比的实验研究[J].新疆大学学报(自然科学版),2005,22(4):430-433. 被引量:2
  • 2Silva M, Jongma R, Field R W, et al. Wodtke.Mordern trend in chemical reaction dynamics[J]. Annu Rev Phys Chem, 2001, 52(s11): 24-28.
  • 3Yuan L W, Du J, Mullin S.Collision-induced vibrational energy transfer[J]. J Chern Phys, 2008, 129(014303): 153-162.
  • 4Jongma R T, WodtkeA M. Fast multiquantum vibrational relaxation of highly vibrationally excited 02[J]. J Chern Phys, 1999, 111(10957): 346-361.
  • 5Barker J R, Yoder L M, King K D. Vibrational energy transfer modeling of nonequilibrium polyatomic reaction systems[J]. J Phys Chern. 2001, A105(167): 796-805.
  • 6Yang X M, Kim E H, Wodtke A M. Stimulated emission pumping studies of energy transfer in high vibrationally excited molecules[J]. J Chern Phys, 1993,97(47): 3944-3955.
  • 7park H, Slanger T G. Quenching rate coefficients for 02 and N2[J]. J Chern Phys, 1994, 100(76): 287-291.
  • 8Yamasaki K, Fujii H, Watanabe S, et al. Efficient vibrational relaxation of 02(X3 1-, u =8) by collisions with CF4 Phys[J]. Chern Chern Phys, 2006, 8(16): 1936-41.
  • 9Watanabe S, Fujii H, Kohguchi H, et al. Kinetic study of vibrational energy transfer from a wide range so vibrational levels of 02(X3 1-, u =6-12) to CF4[J]. J Phys Chern, 2008, A112: 9290-9295.
  • 10Chen J J, Hung Y M, Liu D K, et al. Reaction pathway,energy barrier, and rotational state distribution for LHH2-LiH+H[J]. J Chern Phys, 2001, 114(21): 9395.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部