摘要
下述定理得到证明:设f是超越亚纯函数,a0,a1,…,ak是f的一组小函数,且ak≠0.置D[f]=a0f+a1f′+…+akf(k)如果微分方程D[ω]=0的亚纯解ω均为f的小函数,则对任意的正数ε,都有(k-1-ε)N(r,f)<Nr,1D[f]+(1+ε)N1(r,f)+S(r,f)此不等式使著名的FrankWeissenborn不等式成为其特殊情况.
In this paper,the following theorem is shown: let f be a transendental meromorphic function and a 0,a 1,…, a k (a k≠0) be some small functions of f and define by D=a 0f+a 1f′+…+a kf (k) If all ω s with D =0 are the small functions of f,then for every ε >0, (k-1-ε)(r,f)<Nr,1D+(1+ε)N 1(r,f)+S(r,f) this result includes Frank Weissenborns inequality.
出处
《西安工业学院学报》
1999年第1期75-80,共6页
Journal of Xi'an Institute of Technology
关键词
超越亚纯函数
小函数
微分算子
零点
F-W不等式
transcendental meromorphic function
small fumction
linear defferential operator
zero point