摘要
研究了方程aU/at二dt”-”具有初始条件以t,0)=t。的CanN问题解的局部化条件及解的全局熄灭问题.其中<>l,叮>0.no是护中具有紧支集的有界非负连续函数.得到的主要结果是:如果1<q<m,那么U卜,t)C凤,其中L是与时间t无关的正数;如果q>m,对于每个正数R,都存在一个时刻t使得suppuG,t)n(才\B。)是一个非空的集合,其中BR=Zxllxl<R;如果0<q<l,那么存在广>。,使以x,t)在S(上为零,其中文一th(T”,ac).
The localization conditions and total extinction of the solution to Cauchy problem with initial condition u(x, 0) = u0 for equation , in which m >1, q > 0. u0 are bounded non-negative continuous function with compact subset in RN, are studied with the following as main results: if 1 < q < m, then u(, t) BL. where L is positive irrelevant to time t; if q < m, for each positive R, there is a moment t to make suppu(,t) (RN \ BR) a non-empty set, where BR = {x ||x|< R}; if 0 < q < 1, then T > 0 to Make μ(x,t) zero above S, where .
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
1999年第2期97-102,共6页
Journal of Harbin Institute of Technology
关键词
非线性
全局熄灭
退化抛物型方程
解
抛物型方程
Non-linear retrogressive projective equation
loratization conditions
total extinction