摘要
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
基金
supported by the China Postdoctoral Science Foundation (20090450333)
supported by the National Basic Research Program (2005CB321700)
NSFC (40890154)