期刊文献+

A BLOW-UP CRITERION FOR COMPRESSIBLE VISCOUS HEAT-CONDUCTIVE FLOWS 被引量:3

A BLOW-UP CRITERION FOR COMPRESSIBLE VISCOUS HEAT-CONDUCTIVE FLOWS
下载PDF
导出
摘要 We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows. We study an initial boundary value problem for the Navier-Stokes equations of compressible viscous heat-conductive fluids in a 2-D periodic domain or the unit square domain. We establish a blow-up criterion for the local strong solutions in terms of the gradient of the velocity only, which coincides with the famous Beale-Kato-Majda criterion for ideal incompressible flows.
作者 江松 欧耀彬
机构地区 LCP
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期1851-1864,共14页 数学物理学报(B辑英文版)
基金 supported by the China Postdoctoral Science Foundation (20090450333) supported by the National Basic Research Program (2005CB321700) NSFC (40890154)
关键词 blow-up criteria strong solutions compressible Navier-Stokes equations heat-conductive flows blow-up criteria strong solutions compressible Navier-Stokes equations heat-conductive flows
  • 相关文献

参考文献1

二级参考文献35

  • 1P. Constantin,C. Fefferman,E. S. Titi,A. Zarnescu.Regularity of Coupled Two-Dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems[J]. Communications in Mathematical Physics . 2007 (3)
  • 2Yonggeun Cho,Hyunseok Kim.On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities[J]. manuscripta mathematica . 2006 (1)
  • 3David Hoff.Compressible Flow in a Half-Space with Navier Boundary Conditions[J]. Journal of Mathematical Fluid Mechanics . 2005 (3)
  • 4Song Jiang,Ping Zhang.On Spherically Symmetric Solutions?of the Compressible Isentropic Navier–Stokes Equations[J]. Communications in Mathematical Physics . 2001 (3)
  • 5David Hoff.Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[J]. Archive for Rational Mechanics and Analysis . 1995 (1)
  • 6R. J. DiPerna,P. L. Lions.Ordinary differential equations, transport theory and Sobolev spaces[J]. Inventiones Mathematicae . 1989 (3)
  • 7J. T. Beale,T. Kato,A. Majda.Remarks on the breakdown of smooth solutions for the 3-D Euler equations[J]. Communications in Mathematical Physics . 1984 (1)
  • 8Akitaka Matsumura,Takaaki Nishida.Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[J]. Communications in Mathematical Physics . 1983 (4)
  • 9V. A. Solonnikov.Solvability of the initial-boundary-value problem for the equations of motion of a viscous compressible fluid[J]. Journal of Soviet Mathematics . 1980 (2)
  • 10Jean Leray.Sur le mouvement d’un liquide visqueux emplissant l’espace[J]. Acta Mathematica . 1934 (1)

共引文献13

同被引文献5

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部