期刊文献+

基于脉冲余弦变换的选择性视觉注意模型 被引量:7

Selective Visual Attention Model Based on Pulsed Cosine Transform
原文传递
导出
摘要 提出一种基于脉冲余弦变换的视觉注意模型,它模仿自底向上视觉注意的形成机制.该模型结构简单,计算速度快,能够应用于实时处理系统.在该模型中,视觉显著性可表示为二元编码,这与人脑神经元脉冲放电方式相符合.运动显著性也可通过这些二元编码生成.此外,该模型还可推广为基于Hebb学习规则的神经网络.实验结果表明,在人眼注视点预测性能上,该模型优于其它经典视觉注意模型. A visual attention model based on pulsed cosine transform is proposed, which mimics the generating mechanism of bottom-up visual attention. Due to its simple architecture and high computational speed, the proposed model can be used in real-time systems. The visual salience of the model is represented in binary codes, which agrees with the firing pattern of neurons in the human brain. The motion salience is generated by these binary codes as well. Moreover, the model can be extended to Hebbian-based neural networks. Experimental results show that the proposed model has better performance in human fixation prediction than other state-of-the-art models of visual attention.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期616-623,共8页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2009AA12Z115) 国家自然科学基金项目(No.61071134) 上海市重点学科建设项目(No.B112)资助
关键词 视觉注意 显著图 运动视觉 脉冲余弦变换(PCT) 主成分分析 Visual Attention, Saliency' Map, Motion Vision, Pulsed Cosine Transform (PCT), Principal Component Analysis
  • 相关文献

参考文献15

  • 1Treisman A M, Gelade G. A Feature-Integration Theory of Attention. Cognitive Psychology, 1980, 12 ( 1 ) : 97 - 136.
  • 2Koch C, Ullman S. Shifts in Selective Visual Attention : Towards the Underlying Neural Circuitry. Human Neurobiology, 1985, 4 ( 4 ) : 219 - 227.
  • 3Desimone R, Duncan J. Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscienee, 1995, 18:193-222.
  • 4Crick F, Koch C. Constraints on Cortical and Thalamic Projections: the No-Strong-Loops Hypothesis. Nature, 1998, 391 ( 6664 ) : 245 - 250.
  • 5Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254 - 1259.
  • 6Bruce N D B, Tsotsos J K. Saliency, Attention, and Visual Search : An Information Theoretic Approach. Journal of Vision, 2009, 9 (3) : 1 -24.
  • 7Guo Chenlei, Zhang Liming. A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Trans on Image Processing, 2010, 19 ( 1 ) : 185 - 198.
  • 8Li Zhaoping. A Saliency Map in Primary Visual Cortex. Trends in Cognitive Sciences, 2002, 6( 1 ) : 9 - 16.
  • 9Li Zhaoping. Theoretical Understanding of the Early Visual Processes by Data Compression and Data Selection. Network: Computation in Neural Systems, 2006, 17(4) : 301 -334.
  • 10Gonzalez R C, Woods R E. Digital Image Processing. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2002.

同被引文献42

  • 1张立保,马新悦,陈琪.基于感兴趣区的图像零水印算法[J].通信学报,2009,30(S2):117-120. 被引量:8
  • 2王演,梁德群,王彦春,张旗.基于图像属性的Coiflet域数字水印算法[J].电子学报,2006,34(12):2214-2217. 被引量:2
  • 3Itti L,Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[ J].IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 1998, 22(11) : 1 254-1 260.
  • 4Harel J, Koch C,Perona P. Graph-based visual saliency[ J].Neural Information Processing Systems, 2006,19:545-552.
  • 5Bruce N D B, Tsotsos J K. Saliency, attention and visual search: An information theoretic approach[ J]. Journal of Vision,2009 , 9: 1-24.
  • 6Gao D, Han S,Vasconcelos N. Discriminant saliency, the detection of suspicious coincidences, and applications to visualrecognition. [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6) : 989-1 005.
  • 7Zhang L, Tong M H,Marks T K,et al. SUN; A bayesian framework for saliency using natural statistics[ J]. Journal of Vi-son, 2008,8(7) : 1-20.
  • 8Torralba A, Oliva A, Castelhano MS, et al. Contextual guidance of eye movements and attention in real-world scenes : therole of global features in object search[ J].Psychological Review, 2006, 113(4) : 766-86.
  • 9Judd T, Ehinger K, Durand F, et al. Learning to predict where humans look[ J].ICCV, 2009 ; 8.
  • 10Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection[ J]. IEEE Conference on Computer Vision and Pat-tern Recognition, 2010: 2 376-2 383.

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部