期刊文献+

基于SAD与UKF-Mean Shift的主动目标跟踪 被引量:7

Automatic Object Tracking Method Based on SAD and UKF-Mean Shift
原文传递
导出
摘要 针对复杂场景下动态目标难以准确分割以及目标难以准确定位的问题,提出将绝对差值和(SAD)方法、无迹卡尔曼滤波(UKF)和Mean shift算法相结合的混合自主跟踪动态目标的方法.首先,采用SAD方法获相邻两帧的视差信息,利用视差实现动态目标的检测,并依此建立目标的核直方图描述模型和状态空间模型,然后UKF算法对状态空间进行滤波估计,最后采用Mean shift算法精确定位目标.实验结果表明该方法不仅能有效检测场景的动态目标,同时还能获得目标的运动信息.文中所提出的基于UKF-Mean shift的跟踪策略与相关算法相比,体现出较好的跟踪效果与时间性能. Aiming at the problems in accurate motion detection and tracking location under complex scene, an automatic object tracking method combined sum of absolute difference (SAD) and Mean shift with unscented Kalman filter (UKF) is proposed. Firstly block matching method based on SAD is used to estimate the displacement between current frame and successive frame. Then the disparity cues are utilized to detect the moving object automatically and build the object model and state-space model for following tracking task. Finally Mean shift with UKF is employed to filter and estimate the state of the object and locate the object in subsequence image frame. The experimental results show that the proposed moving object detection method effectively detects moving objects in scene and acquires the motion information of objects. Compared with the related methods, the proposed tracking strategy based on UKF-Mean shift has better tracking results and time property.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期646-652,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金重大专项项目(No.90820302) 国家自然科学基金面上项目(No.60805027) 国家博士点基金项目(No.200805330005)资助
关键词 绝对差值和(SAD) 目标检测 无迹卡尔曼滤波(UKF) 目标跟踪 Sum of Absolute Difference (SAD), Object Detection, Unscented Kalman Filter (UKF), Object Tracking
  • 相关文献

参考文献17

  • 1Ribarie S, Adrinek G, Segvic S. Real Time Active Visual Tracking System// Proc of the 12th IEEE Mediterranean Electrotechnical Conference. Dubrovnik, Croatia, 2004, I : 231 -234.
  • 2Mittal A, Paragios N. Motion-Based Background Subtraction Using Adaptive Kernel Density Estimation// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 302 - 309.
  • 3Jodoin P M, Mignotte M, Konrad J. Statistical Background Subtraction Using Spatial Cues. IEEE Trans on Circuits and Systems for Video Technology, 2007, 17 ( 12 ) : 1758 - 1763.
  • 4McHugh J M, Konrad J, Saligrama V, et al. Foreground-Adaptive Background Subtraction. IEEE Signal Processing Letters, 2009, 16 (5) : 390 -393.
  • 5Xu Fengliang, Fujimura K. Human Detection Using Depth and Gray Images//Proc of the IEEE Conference on Advanced Video and Signal Based Surveillance. Santa Fe, USA, 2003 : 115 - 121.
  • 6Parviz E, Wu O M J. Multiple Object Tracking Based on Adaptive Depth Segmentation//Proc of the Canadian Conference on Computer and Robot Vision. Windsor, Canada, 2008 : 273 -277.
  • 7Rafael M S, Eugenio A, Miguel G S, et al. A Mukiple Object Tracking Approach That Combines Colour and Depth Information Using a Confidence Measure. Pattern Recognition Letters, 2008, 29 (10) : 1504 - 1514.
  • 8Hue C, Le Carde J P, Perez P. Tracking Multiple Objects with Particle Filtering. IEEE Trans on Aerospace and Electronic Systems, 2002, 38(3): 797-811.
  • 9Vadakkepat P, Liu Jing. Improved Particle Filter in Sensor Fusion for Tracking Randomly Moving Object. IEEE Trans on Instrumentation and Measurement, 2006, 55(5) : 1823 -1832.
  • 10Mihaylova L, Boel R, Hegyi A. An Unscented Kalman Filter for Freeway Traffic Estimation//Proc of the 11 th IFAC Symposium on Control in Transportation Systems. Delft, Netherlands, 2006 : 31 - 36.

二级参考文献42

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4D. COMANICIU, P. MEER. Mean shift: a robust application toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5D. COMANICIU, P. MEER. Robust analysis of feature spaces: color image segmentation [A]. Proc, 1997 IEEE conf.Computer Vision and Pattern Recognition[C]. San Juan, Puerto Rico: IEEE, 1997. 750-755.
  • 6Changjiang YANG, Ramani DURAISWAMI, Larry DAVIS. Similarity measure for nonparametric kernel density based object tracking[A]. Eighteenth Annual Conference on Neural Information Processing Systems[C]. Victoria, British Columbia,Canada: NIPS, 2004
  • 7Robert T. COLLINS. Mean-shift blob tracking through scale space [J]. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03), 2003, 2: 234-240.
  • 8K. NUMMIARO, E. Koller-MEIER, L.Van GOOL. Color features for tracking non-rigid objects. Special Issue on Visual Surveillance [J]. Chinese Journal of Automation, 2003, 29(3): 345-355.
  • 9D. COMANICIU, V. RAMESH, E MEER. Kernel-based object tracking [J]. IEEE Transactions. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 10K. FUKUNAGE, L, D. HOSTETLER. The estimation of the gradient of a density function with application in pattern recognition [J]. IEEE Trans. on Information Theory, 1975, 21(1): 32-40.

共引文献106

同被引文献126

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部