期刊文献+

结合EFD与NCut的彩色图像分割方法 被引量:5

Color Image Segmentation Approach by Combining EFD and NCut
原文传递
导出
摘要 为了克服边缘流引导的各向异性扩散(EFD)方法过分割和归一化分割(NCut)方法计算复杂度高的缺点,提出结合EFD和NCut的彩色图像分割方法.首先利用EFD对图像进行预分割,然后将分割区域作为节点构建带权无向图G,用NCut对图进行全局最优化分类,并进行相应后处理,得到最终结果.由于图G是基于过分割区域而非像素点的,所以算法效率得到较大提高.另外,EFD方法可有效利用图像的局部信息,NCut方法则考虑到图像的全局特征,因此文中方法综合两者的优点.实验结果表明,文中方法能够取得较好的分割效果. To overcome the over segmentation phenomenon of edgeflow-driven anisotropic diffusion (EFD) and the high computational complexity of normalized cut (NCut) , a color image segmentation algorithm based on EFD and NCut is presented. EFD is applied to the image to get a preliminary result. Then, the segmented regions are taken applied to perform globally as nodes to construct a optimized clustering. weighted undirected graph G, and the NCut is Segmentation results are achieved after proper post-process. The graph structure is based on segmented regions instead of image pixels, and thus the proposed algorithm requires lower computational complexity. In addition, EFD focuses on local detail while NCut captures global property, so this algorithm combines both advantages. Experimental results show that this algorithm can get appropriate segmentation results.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期671-677,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60773172) 江苏省自然科学基金(No.BK2008411) 教育部博士学科点基金(No.200802880017)资助项目
关键词 彩色图像分割 边缘流引导的各向异性扩散(EFD) 归一化分割(NCut) Color Image Segmentation, Edgeflow-Driven Anisotropic Diffusion (EFD), Normalized Cut (NCut)
  • 相关文献

参考文献16

  • 1Geraud T, Strub P Y, Darbon J. Color Image Segmentation Based on Automatic Morphological Clustering//Proc of the IEEE International Conference on Image Processing. Thessaloniki, Greece, 2001, Ⅲ : 70 -73.
  • 2Ye Qixiang, Gao Wen, Zeng Wei. Color Image Segmentation Using Density-Based Clustering// Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Hongkong, China, 2003, Ⅲ : 345 - 348.
  • 3Wan S Y, Higgins W E. Symmetric Region Growing. IEEE Trans on Image Processing, 2003, 12(9) : 1007 -1015.
  • 4Falcao A X, Udupa J K, Samarasekera S, et al. User-Sleered Image Segmentation Paradigms Live Wire and Live Lane. Graphic Models and Image Processing, 1998, 60(4) : 233 -260.
  • 5Wu Yong, He Yuanjun, Cai Hongming. Optimal Threshold Selection Algorithm in Edge Detection Based on Wavelet Transform. Image and Vision Computing, 2005, 23(13) : 1159 - 1169.
  • 6Weszka J S, Rosenfeld A. Histogram Modification for Threshold Selection. IEEE Trans on System, Man and Cybernetics, 1979, 9 (1): 38-52.
  • 7Dong Guo, Xie Ming. Color Clustering and Learning for Image Segmentation Based on Neural Networks. IEEE Trans on Neural Networks, 2005, 16(4) : 925 -936.
  • 8Zhu Hongwei, Basir O A. Fuzzy Sets Theory Based Region Merging for Robust Image Segmentation// Proc of the International Conference on Fuzzy Systems and Knowledge Discovery. Changsha, China, 2005, Ⅱ : 426 -435.
  • 9Mumford D, Shah J. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Communications on Pure and Applied Mathematics, 1989, 42 (5) : 577 - 585.
  • 10Sumengen B, Manjunath B S. Edgeflow-Driven Variational Image Segmentation: Theory and Performance Evaluation [ EB/OL ]. [ 2009-06-06 ]. http ://barissumengen. com/documents/variational _eval. pdf.

二级参考文献11

  • 1崔明,孙守迁,潘云鹤.基于改进快速分水岭变换的图像区域融合[J].计算机辅助设计与图形学学报,2005,17(3):546-552. 被引量:13
  • 2Chandran S,Ranjan A.Combining spanning trees and Normalized Cuts for Intemet retrieval.IS&T/SPIE Electronic Imaging 2004.
  • 3Shi J,Malik J.Normalized Cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 4Vincent L,Solille P.Watershed in digital spaces:an efficient algorithm based immersion simulations[J].IEEE Trans PAMI,1991,13(6):583-598.
  • 5Bleau A,Leon L J.Watershed-based segmentation and region merging[J].Computer Vision and Image Understanding,2000,77 (3):317-370.
  • 6Pavan M,Pelillo M.A New graph-theoretic approach to clustering and segmentation[C]//Proceedings of 2003 IEEE Computer Society Conference on CVPR,2003,1:145-152.
  • 7Park J,Keller J M.Snakes on the watershed[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(10):1201-1205.
  • 8Wang D.A multi-scale gradient algorithm for image segmentation using watershed[J].Pattern Recognition,1997,678(12):2043-2052.
  • 9Haris K,Efstratiadis S N.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7 (12):1684-1698.
  • 10Felzenszwalb P F,Huttenlocher D P.Efficient graph-based image segmentation[J].International Journal of Computer Vision,2004,59(2):167-181.

共引文献14

同被引文献62

  • 1赵于前,王小芳,李桂源.基于多尺度多结构元素的肝脏图像分割[J].光电子.激光,2009,20(4):563-566. 被引量:12
  • 2卢志茂,许晓丽,范冬梅,李海燕.二次分水岭和Ncut相结合的彩色图像分割方法[J].华中科技大学学报(自然科学版),2011,39(S2):95-98. 被引量:9
  • 3Pal N,Pal S. A review on image segmentation techniques[J]. Pattern Recognition, 1993,26( 9 ): 1277-1294.
  • 4Jaffar M A, Naveed N, Ahmed B, et al. Fuzzy c-means clustering with spatial information for color image segmentation[A]. Electrical Engineering, International Conference on[C]. 2009,1-6.
  • 5ZHANG Jun,ZHANG Qie-shi. Color image segmentation based on wavelet transformation and SOFM neural network[A]. IEEE International Conference on Robotics and Biomimetics [C].2007,1178-1781.
  • 6Falco A X,Udupa J K.Samarasekera S,et al. User-steered image segmentation paradigms live wire and live lane[J]. Graphic Modles and Image Processing, 1998,60(4): 233-260.
  • 7LU Bo-sheng,WEI Yu-ke, LI Jiang-ping. A noise-resistant fuzzy Kohonen clustering network algorithm for color image segmentation[A]. International Conference on Computer Science & Education[C]. 2009,44-48.
  • 8DONG Guo. XlE Ming. Color clustering and learning for image segmentation based on neural networks[J]. IEEE Transactions on Neural Networks. 2005,16 (4) : 925-936.
  • 9Ugarriza L G, Saber E. Vantaram S R, et al. Automatic image segmentation by dynamic region growth and multiresolution merging[J]. IEEE Transactions on Image Processing, 2009,18 (10) :2275-2288.
  • 10Sumengen B, Manjunath B S. Graph partitioning active contours (GPAC) for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2005,28 (4) :509-521.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部