期刊文献+

权向量投影多平面支持向量机 被引量:3

Multisurface Support Vector Machines via Weight Vector Projection
原文传递
导出
摘要 提出一个多平面支持向量机算法——权向量多平面支持向量机(WMPSVM).该方法利用差代替Rayleigh商问题,从而避免广义特征值的奇异问题.与传统分类器不同,该方法无需求解具体的超平面,仅求解两个权向量.其决策是将测试样本归为距样本投影均值距离最近的所在的类.从广义支持向量机(GEPSVM)求解目的出发,该方法在保证得到与GEPSVM相当的计算效率的前提下,能较好地求解异或问题以及一些复杂异或问题.最后在人工数据集和UCI数据集上显示,该方法的性能要好于GEPSVM. A multisurface support vector machine classifier is proposed called multisurface support vector machines via weight vector projection. It generates two weight vectors by solving two simple eigenvalue problems without consideration of the matrix singularity in it. Unlike the standard classifiers, the solution of the specific hyperplane is not required. According to the decision rule of the proposed approach, a unseen point is assigned to the closest projected mean. The proposed approach obtains comparable computational efficiency compared with proximal support vector machine via generalized eigenvalues (GEPSVM). Moreover, it solves some complex XOR problems as well. The experimental results on artificial and UCI datasets show that the classification performance of the proposed approach outperforms that of GEPSVM.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期708-714,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.30671639)
关键词 支持向量机 简单特征值 奇异性 异或问题 权向量投影 Support Vector Machine, Simple Eigenvalue, Singular Value, XOR Problem, Weight Vector Projection
  • 相关文献

参考文献11

  • 1Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley, 1998.
  • 2Mangasarian O L, Wild E W. Multisurface Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 1 ) : 69 - 74.
  • 3杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 4杨绪兵,陈松灿,杨益民.局部化的广义特征值最接近支持向量机[J].计算机学报,2007,30(8):1227-1234. 被引量:10
  • 5Lee Y J, Mangasarian O L. RSVM: Reduced Support Vector Machines// Proc of the 1 st SIAM International Conference on Data Mining. Chicago, USA, 2001 : 5 -7.
  • 6Richard D, Peter H. Pattern Classification and Scene Analysis. New York, USA: Wiley, 1973.
  • 7Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels// Proc of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing. Madison, USA, 1999 : 41 -48.
  • 8Muphy P M, Aha D W. UCI Repository of Machine Learning Databases [ DB/OL]. [ 2009-01-01 ]. http://archive. ics. uci. edu/ ml/.
  • 9Mitchell T M. Machine Learning. Boston, USA : McGraw-Hill, 1997.
  • 10Golub G H, Loan C F V. Matrix Computations. 3rd Edition. Baltimore, USA: John Hopkins University Press, 1996.

二级参考文献23

  • 1杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 2G Fung,O L Mangasarian.Proximal support vector machine classifiers[C].In:Proc of Knowledge Discovery and Data Mining.New York:ACM Press,2001.77-86
  • 3T Evgeniou,M pontil,T Poggio.Regularization networks and support vector machines[J].Advances in Computational Mathematics,2000,13(1):1-50
  • 4J A K Suykens,T Van Gestel,J DeBrabanter,et al.Least Squares Support Vector Machines[M].Singapore:World Scientific Publishing Co,2002
  • 5O L Mangasarian,E W Wild.Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(1):69-74
  • 6R O Duda,P E Hart,D G Stock.Pattern Classification[M].2nd Edition.New York:John Wiley & Sons,Inc,2001
  • 7S Haykin.Neural Networks:A Comprehensive Foundation,2nd Edition.Englewood Cliffs,NJ:Pretice-Hall,Inc,2001
  • 8Haifeng Li,Tao Jiang,Keshu Zhang.Efficient and robust feature extraction by maximum margin criterion[C].In:Proc Conf Advances in Neural Information Processing Systems.Cambrigde,MA:MIT Press,2004.97-104
  • 9P M Murphy,D W Aha.UCI machine learning repository[OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1992
  • 10D R Musicant.NDC:Normally distributed clustered datasets[OL].http://www.cs.wisc.edu/~musicant/data/ndc/,1998

共引文献20

同被引文献28

  • 1杨绪兵,陈松灿,杨益民.局部化的广义特征值最接近支持向量机[J].计算机学报,2007,30(8):1227-1234. 被引量:10
  • 2DENG N Y, TIAN Y J, ZHANG C H. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. Boca Ra- ton, USA: CRC Press, 2012.
  • 3VAPNIK V N. Statistical Learning Theory. New York, USA: Wiley Press, 1998.
  • 4MANGASARIAN O L, WILD E W. Muhisurfaee Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 1 ) : 69 -74.
  • 5JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin Support Vector Machines for Pattern Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (5) : 905-910.
  • 6KUMAR M A, GOPAL M. Least Squares Twin Support Vector Machines for Pattern Classification. Expert Systems with Applica- tions, 2009, 36(4): 7535-7543.
  • 7PENG X J. TPMSVM: A Novel Twin Parametric-Margin Support Vector Machine for Pattern Recognition. Pattern Recognition, 2011,44(10/11 ): 2678-2692.
  • 8SHAO Y H, CHEN W J, DENG N Y. Nonparallel Hyperplane Su- pport Vector Machine t'or Binary Classification Problems. Information Sciences, 2014, 263: 22-35.
  • 9SHAO Y H, CHEN W J, ZHANG J J, et al. An Efficient Weighted Lagrangian Twin Support Vector Machine for Imbalanced Data Cla- ssification. Pattern Recognition, 2014, 47(9) : 3158-3167.
  • 10CHEN W J, SHAO Y H, XU D K, et al. Manifold Proximal Su-pport Vector Machine for Semi-supervised Classification. Applied Intelligence, 2014, 40(4): 623-638.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部