期刊文献+

基于改进距离聚合向量的图像检索算法 被引量:3

An Improved Distance Coherence Vector Algorithm for CBIR
原文传递
导出
摘要 针对Sajjanhar等提出的基于距离聚合向量的图像检索算法的不足,提出一种改进距离聚合向量的图像检索算法.该算法在距离聚合向量的基础上加入最大连通聚合像素平均坐标的质心距离特征,新增的特征向量具有平移、旋转和尺度不变性.对于原聚合向量特征和新增的质心距离特征,分别采用不同的相似性度量函数进行相似度匹配.该改进算法融入比距离聚合向量更多的空间信息.实验结果表明,该算法具有更高的查全率和准确率. An improved distance coherence vector for content-based image retrieval (CBIR) is proposed to improve the algorithm proposed by Sajjanhar et al. The improved algorithm regards centroidal distances vector of average coordinates from the biggest eonnected coherence pixels as a new feature vector. The new added feature vector is invariable to translation, measured by different similar functions according better retrieval effect due to the more introduced scaling and rotation. Similarity of images is to different feature vectors. spatial that the improved algorithm has high recall and precision. The improved algorithm has information. The experimental results indicate
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期715-719,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60675022) 江西省自然科学基金(No.2008GZS0034) 航空科学基金(No.20085556017)资助项目
关键词 图像检索 距离直方图 聚合向量 质心距离 Image Retrieval, Distance Histogram, Coherence Vector, Centroidal Distance
  • 相关文献

参考文献8

  • 1Zhang Dengsheng, Lu Guojun. Review of Shape Representation and Description Techniques. Pattern Recognition, 2004, 37 (1) : 1 -19.
  • 2Sajjanhar A, Lu Guojun, Zhang Dengsheng. Coherence Based Histograms for Shape Retrieval// Proc of the International Conference on Computer Science, Software Engineering, Information Technology, e-Business and Applications. Cairo, Egypt, 2004 : 27 - 29.
  • 3Super B J. Fast Correspondence-Based System for Shape Retrieval. Pattern Recognition Letter, 2004, 25(2) : 217 -225.
  • 4孙君顶,李泉溪,毋小省.一种新的轮廓特征提取和检索算法[J].光电子.激光,2009,20(1):108-112. 被引量:10
  • 5Sajjanhar A. Spatial Information in Histograms for Shape Representation//Proc of the International Conference on Intelligent Data Engineering and Automated Learning. Hongkong, China, 2003 : 855 - 859.
  • 6Fan Shuang. Shape Representation and Retrieval Using Distance Histograms. Technical Report, 01- 14, Edmonton, Canada: University of Alberta. Department of Computing Science, 2001.
  • 7Pass G, Zabih R. Histogram Refinement for Content-Based Image Retrieval// Proc of the 3rd IEEE Workshop on Applications of Gomputer Vision. Sarasota, USA, 1996 : 96 - 102.
  • 8曾智勇,张学军,周利华.基于显著封闭边界的图像检索算法[J].计算机科学,2006,33(8):221-224. 被引量:1

二级参考文献18

  • 1Gu Y H, Tjahjadi T. Comer Based Feature Extraction for Object Retrieval[A]. In.. Proc. IEEE Conference on Image Processing[C], Kobe, Japan,1999. 119-123
  • 2Jain A, Vailaya A. Image Retrieval Using Color and Shape[J].Pattern Recognition, 1996,29 : 1233- 1244
  • 3Bober M. MPEG-7 Visual Shape Descriptors[J].IEEE Trans on Circuit and Systems for Video Technology,2001,11(6) :716-719
  • 4Zhou X S, Huang T S. Edge-Based Structural Features for Content-Based Image Retrieval [J]. Pattern Recognition Letters,2001,22:457-468
  • 5Wang S, Kubota T, Siskind J M, et al. Salient Closed Boundary Extraction with Ratio Contour[J]. IEEE Transactions on Pattern Analysis Machine Intelligence,2005,27(4) :546-561
  • 6Kubota T. Contextual and non-combinatorial approach to feature extraction[A]. In: Proc. Int'l Workshop on EMMCVPR[C],Lisbon, Portugal,2003. 467-482
  • 7Wang S, Siskind J M. Image segmentation with ratio cut[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (6) : 675- 690
  • 8Ahuja R K, Magnanti T K, Orlin J B. Network Flows: Theory,Algorithms, & Applications. Prentice Hall,1993
  • 9Nastar C, Mitsehke M, Meihae C. Efficient Query Refinement for Image Retrieval[A]. In:Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. SantaBarbara, California, USA, 1998. 547- 552
  • 10Sajjanhar A.Spatial informationinhistogramsfor shaperepresentation[].Lecture Notesin Computer Science.2003

共引文献9

同被引文献27

  • 1杨冉,卢朝阳.基于边缘特征的图像检索[J].微机发展,2005,15(1):24-26. 被引量:7
  • 2董卫军,周明全,耿国华.基于形状-空间关系的图像检索技术[J].计算机工程,2005,31(20):170-172. 被引量:5
  • 3de Almeida C W D,de Souza R M C R.Image retrievalusing the Curvature Scale Space(CSS)descriptor and theSelf-Organizing MAP(SOM)model under invariance[C]//IEEE International Joint Conference on Neural Net-works,2008:2756-2760.
  • 4Boaz J S.Fast correspondence-based system for shape retrieval[J].Pattern Recognition Lett,2004,25:217-225.
  • 5Mahmoudi F.Image retrieval based on shape similarity by edge orientation autocorrelogram[J].Pattern Recogni-tion,2003,36:1725-1736.
  • 6Dony R D,Wesolkowski S.Edge detection on color im-ages using RGB vector angles[C]//Proc IEEE Canadian Conference on Electrical and Computer Engineering,2002,2:687-692.
  • 7Mallat S,Zhong S.Characterization of signals from mul-tiscale edges[J].IEEE Trans on Pattern Analysis and Ma-chine Intelligence,1992,14(7):710-732.
  • 8Mallat S,Hwang W.Singularity detection and processing with wavelets[J].IEEE Transactions on Information Theo-ry,1992,38(2):710-732.
  • 9Sun W,Romagnoli J A.Line edge detection and charac-terization in SEM images using wavelets[J].IEEE Transactions on Semiconductor Manufacturing,2009,22(1):180-187.
  • 10Hussain M,Okada Y.Wavelet-based edge detection in digital images[J].International Journal of Image and Graphics,2008,8(4):513-533.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部