期刊文献+

基于距离特征的自适应阈值视频拼接算法 被引量:4

Adaptive Threshold Video Splicing Algorithm Based on Distance Feature
原文传递
导出
摘要 针对虚拟漫游系统中视频拼接问题,提出一种基于距离的自适应阈值拼接算法.通过提取距离特征,并在待匹配的帧图像中采用自适应阈值序列的序贯相似性检测算法搜索匹配特征,从而确定重叠部分的起始列值.实验结果表明,该算法能更好地实现视频拼接,且减少计算量,提高拼接速度. An adaptive threshold video splicing algorithm based on distance feature is p problem of video splicing in virtual walkthrough system. The algorithm is used to splice video images captured by virtual walkthrough system. By extracting distance feature, the adaptive threshold sequential similarity detection algorithms (SSDA) is used to search the matching feature in the frame images to be matched. Then, the beginning column of the overlapping part is estimated. Experimental results show the proposed algorithm realizes video splicing better, reduces workload and accelerates the splicing speed.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期727-730,共4页 Pattern Recognition and Artificial Intelligence
关键词 距离特征匹配 序贯相似性检测算法(SSDA) 视频拼接 虚拟漫游 Distance Feature Matching, Sequential Similarity Detection Algorithm (SSDA), Video Splicing, Virtual Walkthrough
  • 相关文献

参考文献9

  • 1Lowe D G. Object Recognition from Local Scale Invariant Features // Proc of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999, Ⅱ : 1150-1157.
  • 2Lowe D G. Distinctive Image Features from Scale Invariant Key- Points. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110.
  • 3谢路,廖庆敏.跳水动作视频拼接[J].电视技术,2005,29(z1):122-124. 被引量:3
  • 4马令坤,张震强.图像拼接算法的研究[J].微计算机信息,2007,23(02X):303-305. 被引量:13
  • 5Bamea D I, Silverman H F. A Class of Algorithm for Fast Digital Image Registration. IEEE Trans on Computing, 1972, 21 (2): 176 - 186.
  • 6Hong Zhenhua, Zhu Peiying. An Improved SSDA Applied in Target Tracking//Proc of the 9th IEEE International Conference on Pattern Recognition. Rome, Italy, 1988, Ⅱ : 767-769.
  • 7Hatabu A, Miyazaki T, Kuroda I. Optimization of Decision-Timing for Early Termination of SSDA-Based Block Matching//Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Baltimore, USA, 2003 : 821 - 824.
  • 8Castleman K R. Digital Image Processing. Upper Saddle River, USA: Prentice Hall, 1995.
  • 9班晓娟,宁淑荣,张亚,尹怡欣.一种改进的自适应阈值SSDA的视频拼接算法——在交通场景中的研究与应用[J].系统仿真学报,2008,20(22):6201-6204. 被引量:7

二级参考文献27

  • 1谢路,廖庆敏.跳水动作视频拼接[J].电视技术,2005,29(z1):122-124. 被引量:3
  • 2曹俊杰,封靖波,苏志勋.全景图像拼接算法[J].大连理工大学学报,2003,43(z1):180-182. 被引量:16
  • 3章毓晋.中国图像工程:2003[J].中国图象图形学报(A辑),2004,9(5):513-531. 被引量:31
  • 4梁运行,崔杜武.图像拼接的预处理算法研究[J].西安理工大学学报,2003,19(4):348-351. 被引量:5
  • 5郭栋,王志良,李正熙,张永忠.基于DSP的实时图像处理系统[J].微计算机信息,2005,21(3):83-84. 被引量:24
  • 6L G Brown. A survey of image registration techniques [J]. ACM Computer Surveys (S0360-0300), 1992, 24(4): 325-376.
  • 7C Kuglin, D Hines. The Phase Correlation Image alignment Method. [C]//IEEE Int. Conf. on Cybernetics and Society, 1975. USA: IEEE, 1975: 163-165.
  • 8Deriche R, Blaszka T. Recovering and characterizing image features using an efficient model based approach. [C]// Computer Vision and Pattern Recognition, Proceedings, IEEE Computer Society Conference. USA: IEEE, 1993:530-535.
  • 9Richard Szeliski. Video Graphics and Applications, mosaics for virtual environments. [J]. IEEE Computer Graphics and Applications (S0272-1716), 1996, 16(2): 22-30.
  • 10Bamea D I. A class of algorithm for digital image registration. [C]// IEEE Trans Computer, 1972. USA: IEEE, 1972, 21(2): 176-186.

共引文献20

同被引文献31

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2向长波,刘太辉,宋建中.基本矩阵的鲁棒贪心估计算法[J].计算机辅助设计与图形学学报,2007,19(5):651-655. 被引量:11
  • 3ZHOU H Y, PATRICK R G, ANDREW M. Esti- mation of epipolar geometry by linear mixed-effect modelling[J]. Neurocomputing, 2009, 72(16-18): 3881-3890.
  • 4ONAY U, THORSTEN T, HELLWARD B, et al.. Algebraic error analysis of collinear feature points for camera parameter estimation[J]. Com- puter Vision and Image Understanding, 2011, 115 (4) : 467-475.
  • 5SERGIU N, CATALIN G, COSMIN M. Impro- ving accuracy {or ego vehicle motion estimation u- sing epipolar geometry[C]. Proceedings of the 12th International IEF.E Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 2009 : 596-602.
  • 6LI Q, XING G M. New similarity measures of localities for a two--layer matching scheme and esti- mation of fundamental matrices[J]. Neurocomput- ing, 2010, 73(16-18).. 3114-3122.
  • 7ARMANGUE X, SALVI J. Overall view regarding fundamental matrix estimation[J]. Image and Vi- sion Computing, 2003, 21 : 205-220.
  • 8ZHANG ZH Y. Determining the epipolar geome- try and its uncertainty., a review[J]. International Journal of Computer Vision, 1998, 27 (2) : 161- 198.
  • 9HARTLEY R. In defense of the eight-point algo- rithm[J]. IEEE Transactions on Pattern Recogni- tion and Machine Intelligence, 1997, 19(6): 580- 593.
  • 10HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision[M]. London: Cam- bridge University Press, 2000.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部