期刊文献+

一种改进的最大化AUC方法在障碍物检测中的应用 被引量:2

Improved Method of Maximizing AUC and Its Application to Obstacle Detection
原文传递
导出
摘要 在障碍物检测中,障碍物/非障碍物样本具有在特征空间上相互重叠范围大和分布不均衡的特点,而传统的分类器训练方法对这种数据的处理往往力不从心.针对此问题,文中提出一种改进的最大化ROC曲线下面积(AUC)方法来对分类器进行训练.该方法使用一种替代函数来作优化AUC的目标函数,同时将粒子群算法引入到AUC目标函数优化中,并通过使用巴特沃兹曲线和对适应值较差的粒子进行突变等方式对其进行改进.实验表明,使用该方法能够较好地解决因使用梯度法而产生的局部最优等问题,与已有的方法相比能更进一步提高障碍物的检测率,且算法本身可靠有效. In the obstacle detection, obstacle/non-obstacle samples have characteristics of a large range of overlapping in the feature space and uneven distribution. The traditional training method for the classifier is not competent for dealing with such data. Thus, an improved method of maximizing area under the ROC (AUC) is proposed to train classifier. An alternative function is used as the objective function of optimizing AUC. Meanwhile, the particle swarm optimization is introduced to optimize the AUC objective function, and the particle swarm optimization algorithm is improved by using the Butterworth curves and particles with the low fitness value being mutated. The experimental results show that the proposed method effectively solves the local optimization caused by the gradient descent method. Moreover, the detection performance of the proposed method is improved compared with other existing algorithms, and the algorithm is reliable and efficient.
作者 韩光 赵春霞
出处 《模式识别与人工智能》 EI CSCD 北大核心 2010年第5期731-737,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60705020 90820306)资助项目
关键词 最大化ROC曲线下面积 非线性分类器 梯度下降法 粒子群算法 障碍物检测 Maximizing Area Under the ROC, Nonlinear Classifier, Gradient Descent Method, Particle Swarm Optimization, Obstacle Detection
  • 相关文献

参考文献22

  • 1Adler W, Lausen B. Bootstrap Estimated True and False Positive Rates and ROC Curve. Computational Statistics and Data Analysis, 2009, 53(3) : 718 -729.
  • 2Alsing S G, Bauer K W, Miller J O. A Muhinomial Selection Procedure for Evaluating Pattern Recognition Algorithms. Pattern Recognition, 2002, 35( 11 ) : 2397 -2412.
  • 3Flach P A. The Many Faces of ROC Analysis in Machine Learning //Proc of the 21st International Conference on Machine Learning. Alberta, Canada, 2004:485-487.
  • 4Cortes C, Mohfi M. AUC Optimization vs. Error Rate Minimization //Proc of the 18th Annum Conference on Neural Information Processing Systems. Vancouver, Canada, 2004 : 16 - 24.
  • 5Ling C X, Huang Jin, Zhang H. AIJC : A Better Measure Than Accuracy in Comparing Learning Algorithms//Proc of the International Joint Conferences on Artificial Intelligence. Acapulco, Mexico, 2003 : 329 -341.
  • 6Provost F J, Fawcett T, Kohavi R. The Case against Accuracy Estimation for Comparing Induction Algorithms//Proc of the 15th International Conference on Machine Learning. Wisconsin, USA, 1998 : 445 - 453.
  • 7Tax D M J, Veenman C J. Tuning the Hyperparameter of an AUC- Optimized Classifier// Proc of the 17th Belgium-Netherlands Conference on Artificial Intelligence. Brussels, Belgium, 2005 : 224 - 231.
  • 8Joachims T. A Support Vector Method for Multivariate Performance Measures//Proc of the 22nd International Conference on Machine Learning. Bonn, Germany, 2005 : 377 - 384.
  • 9Tax D J M, Duin R P W, Arzhaeva Y. Linear Model Combining by Optimizing the Area under the ROC Curve//Proc of the 18th IEEE International Conference on Pattern Recognition. Hongkong, China, 2006:119 - 122.
  • 10Marrocco C, Molinara M, Tortorella F. Exploiting AUC for Optimal Linear Combination of Dichotomizers. Pattern Recognition Letters, 2006, 27 ( 8 ) : 900 - 907.

二级参考文献12

  • 1刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 2K Boesen,K Rehm,K Schaper,et al.Quantitative comparison of four brain extraction algorithms[J].Neuroimage,2004,22(3):1255-61
  • 3Le Goualher,A M Argenti,et al.Statistical sulcus shape comparisons:Application to the detection of genetic encoding of the central sulcus shape[J].Neuroimage,2000,19(11):564-574
  • 4N K Logothetis,J Pauls,M Augath,et al.Neurophsiological investigation of the basis of the fMRI signal[J].Nature,2001,412(12):150-157
  • 5M Kass,A Witkin,D Terzopoulous.Snake:Active contour models[J].International Journal of Computer Vision,1987,1(4):321-331
  • 6S Osher,J A Sethian.Fronts propagating with curvature dependent speed:Algorithms based on the Hamilton-Jacobi formulation[J].Journal of Computational Physics,1988,79(1):12-49
  • 7D Adalsteinsson,J A Sethian.A fast level set method for propagation interfaces[J].Journal of Computational Physics,1995,118(2):269-277
  • 8D Adalsteinsson,J A Sethian.The fast construction of extension velocities in level set methods[J].Journal of Computational Physics,1999,148(1):2-22
  • 9J Gomes,O Faugeras.Reconciling distance functions and level sets[J].Journal of Visional Communication and Image Representation,2000,11(2):209-233
  • 10M Feser,E Weinstein.Parameter estimations of superimposed signals using the EM algorithm[J].IEEE Trans on Acoustics,Speech,and Signal Proceesing,1988,36(4):477-489

共引文献12

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部