摘要
A simple chemical kinetic model is developed which describes the behavior of small ligands that can bind reversibly with large carrier molecules with slower intrinsic rates of transport. Under certain conditions, which we describe, the presence of the slower carriers in fact enhances the transport of the ligand. This is the chemical version of Wyman-Murray′ s facilitated diffusion. The simple model illuminates the driven nature of the enhancement of the transport by the carrier molecules: we show that the facilitated transport depends crucially on a"grand canonical" setting in which the free ligand concentrations are kept constant in the presence of the facilitating protein, in contrast to a canonical setting with constant total ligand concentrations. Results from the simple model are compared to previous experimental and theoretical results for Wyman-Murray facilitated diffusion of oxygen and carbon monoxide in muscle. A relation is established between the association-dissociation rates and the down-stream ligand concentration, or back pressure for oxygen, required for the facilitation effect to occur.
A simple chemical kinetic model is developed which describes the behavior of small ligands that can bind reversibly with large carrier molecules with slower intrinsic rates of transport. Under certain conditions, which we describe, the presence of the slower carriers in fact enhances the transport of the ligand. This is the chemical version of Wyman-Murray′ s facilitated diffusion. The simple model illuminates the driven nature of the enhancement of the transport by the carrier molecules: we show that the facilitated transport depends crucially on a"grand canonical" setting in which the free ligand concentrations are kept constant in the presence of the facilitating protein, in contrast to a canonical setting with constant total ligand concentrations. Results from the simple model are compared to previous experimental and theoretical results for Wyman-Murray facilitated diffusion of oxygen and carbon monoxide in muscle. A relation is established between the association-dissociation rates and the down-stream ligand concentration, or back pressure for oxygen, required for the facilitation effect to occur.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2010年第11期2857-2864,共8页
Acta Physico-Chimica Sinica
基金
supported in part by NSF grants,USA(DMS9810726,DGE0338322AM07)
关键词
化学反应动力学
促进效应
分子
浓度
Facilitated diffusion
Transport
Chemical kinetic model
Grand canonical ensemble