期刊文献+

2维非凸标量守恒律分3片黎曼问题的数值解 被引量:1

Numerical solutions of Riemann problems in three pieces for two-dimensional nonconvex scalar conservation laws
原文传递
导出
摘要 考虑2维非凸标量守恒律初值为3片常数的黎曼问题,使用WENO和Runge-Kutta格式,对具有Guckenheimer结构现象的解进行数值分析,所得数值结果清晰地展示了Guckenheimer结构由激波之间的整体相互作用形成的数学机制,从而揭示了Guckenheimer结构这一重要的2维非线性现象. The Riemann problems with three pieces of constants for two-dimensional nonconvex scalar conservation laws are considered.By using WENO and Runge-Kutta schemes,numerical analysis of solutions involving Guckenheimer structure is presented,the numerical results clearly exhibit the mathematical mechanism of Guckenheimer structure made up of global interactions among the shock waves.Thus the important nonlinear phenomenon of Guckenheimer structure of solutions under two dimensions is shown numerically.
机构地区 云南大学数学系
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期633-638,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10461010) 云南省自然科学基金资助项目(2007A020M)
关键词 2维非凸标量守恒律 黎曼(Riemann)问题 Guckenheimer结构 WENO格式 Runge-Kutta格式 two-dimensional nonconvex scalar conservation laws Riemann problems Guckenheimer structure WENO scheme Runge-Kutta scheme
  • 相关文献

参考文献14

  • 1余俊,杨汉春.二维标量守恒律一些新的黎曼解[J].云南大学学报(自然科学版),2005,27(1):9-13. 被引量:2
  • 2张同,陈贵强.SOME FUNDAMENTAL CONCEPTS ABOUT SYSTEM OF TWO SPATIAL DIMENSIONAL CONSERVATION LAWS[J]Acta Mathematica Scientia,1986(04).
  • 3John Guckenheimer.Shocks and rarefactions in two space dimensions[J]. Archive for Rational Mechanics and Analysis . 1975 (3)
  • 4Zhang P,Zhang T.Generalized characteristic analysis and Guckenheimer structure. Journal of Differential Equations . 1999
  • 5Sheng W.Two-dimensional Riemann problem for scalar conservation laws. Journal of Differential Equations . 2002
  • 6Chi-Wang Shu.Essentially Non-Oscillatory and Weighted Essentially Non-Oscill?atory Schemes for Hyper-bolic Conservation Laws. Journal of Computational Physics . 1997
  • 7Li J Q,Zhang T,Yang S L.The two-dimensional Riemann problem in gas dynamics. . 1998
  • 8G.Chen,,D.Li,and D.Tan.Structure of Riemann solutions for Z-dimensional scalar conservation laws. Journal of Differential Equations . 1996
  • 9Wagner DH.Riemann Problem in Two Space Dimensions For a Single Comervation Law. SIAM Journal on Mathematical Analysis . 1983
  • 10Lindquist W B.The scalar Riemann problem in two spatial dimensions, piecewise smoothness of solutions and its breakdown. SIAM Journal on Mathematical Analysis . 1986

二级参考文献17

  • 1余俊,杨汉春.一类n-维单个守恒律的黎曼问题(英文)[J].云南大学学报(自然科学版),2003,25(4):296-298. 被引量:1
  • 2LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions [ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.
  • 3WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.
  • 4CHANG T, HSIAO L. Riemann problem and interaction of waves in gas dynamics[A]. BREZIS H, DOUGLAS R G, JEFFREY A, et al. Pitman monoger, Surveys in Pure and Applied Mathematics[C]. Essexi: Longrnan, 1989. 174-222.
  • 5GUCKENHEIMER J. Shocks and rarefactions in two space dimensions[J]. Arch Rational Mech Anal, 1975, 59:281-291.
  • 6ZHANG P, ZHANG T. Generalized characteristi, analysis and Guckenheimer structure [ J ]. J Differential Equations, 1999,152: 409-430.
  • 7SHENG W. Two-dimensional Riemann probler, for scalar conservation laws[J ]. J Differential Equations, 2002, 183: 239-261.
  • 8LINDQUIST W B. The scalar Riemann problem in two spatia dimensions: Piecewise smoothness of solutions[ J ]. SIAM J Math Anal, 1986, 17:1 178-1 197.?A
  • 9WAGNER D. The Riemann problem in two space dimensions for a single conservation laws[J]. SIAM J Math Anal, 1983,17: 534-559.?A
  • 10ZHANG T, ZHENG Y. Two-dimensional Riemann problem for a single conservation law[J]. Trans Amer Math Soc, 1989,312: 589-619.?A

共引文献1

同被引文献27

  • 1BRENIER Y, GRENIER E. Sticky particles and scalar conservation laws [ J ]. SIAM J Numer Anal, 1998,35:2 317-2 328.
  • 2ZELDOVICH Y B. Gravitational instablility: An approximate theory for large density perturbations [ J ]. Astronaut Astrohys, 1970,5:84-89.
  • 3SHANDARIN S F, ZELDOVICH Y B. The large - scale structure of the universe Turbulence, intermittency, Structures in a Self - gravitating medium[ J]. Rev Mod Phys, 1989,61 : 185-220.
  • 4BOUCHUT F. On zero pressure gas dynamics, in advances in Kinetic theory and computiong[ M ]: Ser Adv Math Appl Sci22 River Edge, NJ :World Science Publishing, 1994 : 171-190.
  • 5WEINAN E, RYKOV YU G, SINAI YA G. Generalized variational principles, gloval weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics [ J ]. Comm Math Phys, 1996,177:349-380.
  • 6SHENG W C, ZHANG T. The Riemann problem for transportation equation in gas dynamics [ M ]. Mem Amer Math Soc, 1999, 137:654.
  • 7LI J Q,ZHANG T. Generalized Rankine -Hugoniot relations of delta- shocks in solutions of transportation equations[ C ]. G. - Q. Chen, et al. Advances in nonlinear partial differential equations and related areas ( Beijing, 1997 ), [ M ]. River Edge, NJ : World Science Publising, 1998,219-232.
  • 8LI J Q, YANG H C. Delta - shocks as limits of vanishing viscosity for multidimensional zero - pressure gas dynamics [ J ]. Quart Appl Math,2001,59:315-342.
  • 9YANG H C. Generalized plane delta -shock waves for n- dimensional zero -pressure gas dynamics[ J]. J Math Anal Appl, 2001,260 : 18-35.
  • 10YANG H C, HU R, SUN Y. The riemann problem with three constant Initial states for one - dimensional Zero - pressure gas dynamics [ J ]. Southeast Asian Bull Math, 2009,33 : 179-187.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部