期刊文献+

一种人工免疫算法优化的高有效性模糊聚类图像分割 被引量:4

Fuzzy clustering image segmentation algorithm with high validity optimized by artificial immune algorithm
原文传递
导出
摘要 针对传统模糊聚类初值敏感、易陷入局部最优的缺陷,将具有良好勘探和开采能力的人工免疫算法用于模糊聚类的优化并提出了相应的图像分割算法.利用改进的Hausdorff距离提出一种新的抗体浓度评价算子并定义了相应的免疫算子,简化了免疫操作,增强了算法自适应寻优能力.采用最近提出的一种有效性函数作为聚类适应度函数,以人工免疫算法寻优,从而自适应地确定聚类数目与中心,实现自动图像分割.仿真实验表明,该算法可以实现图像的自动高有效性分割. For addressing prematurity and initial sensitive problems with traditional fuzzy clustering,artificial immune algorithm is utilized for optimizing fuzzy clustering image segment,which has excellent ability on exploration and exploitation.A new method for antibody density estimation is proposed based on improved Hausdorff distance,and corresponding immune operators are defined.A new validity index function is selected as fitness function.The number and centers of clusters are adaptively decided by searching optimization using artificial immune algorithm,which realizes automatic image segment.Simulation results show that proposed algorithm can automatically segment image with high validity.
出处 《控制与决策》 EI CSCD 北大核心 2010年第11期1679-1683,共5页 Control and Decision
关键词 图像分割 模糊聚类 有效性函数 人工免疫算法 Image segmentation Fuzzy clustering Validity index Artificial immune algorithm
  • 相关文献

参考文献10

  • 1Zhou H, Schaefer G, Sadka A H, et al. Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images[J]. IEEE J of Selected Topics in Signal Processing, 2009, 3(1): 26-34.
  • 2Fan J, Han M, Wang J. Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation[J]. Pattern Recognition, 2009, 42(11): 2527-2540.
  • 3Pednekar A S, Kakadiaris I A. Image segmentation based on fuzzy connectedness using dynamic weights[J]. IEEE Trans on Image Processing, 2006, 15(6): 1555-1562.
  • 4Kobashi S, Fujiki Y, Matsui M, et al. Interactive segmentation of the cerebral lobes with fuzzy inference in 3T MR images[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cybernetics, 2006, 36(1): 74-86.
  • 5唐英干,刘冬,关新平.基于粒子群和二维Otsu方法的快速图像分割[J].控制与决策,2007,22(2):202-205. 被引量:25
  • 6常发亮,刘静,乔谊正.基于遗传算法的彩色图像二维熵多阈值自适应分割[J].控制与决策,2005,20(6):674-678. 被引量:17
  • 7Pakhiraa M K, Bandyopadhyay S, Maulik U. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification[J]. Fuzzy Set and System, 2005, 155(2): 191-214.
  • 8甄子洋,王道波,刘文波,刘媛媛.变长度微粒群优化模糊聚类的自适应图像分割方法[J].光电子.激光,2009,20(1):99-102. 被引量:12
  • 9Zhang Y, Wang W, Zhang X, et al. A cluster validity index for fuzzy clustering[J]. Int J of Information Sciences, 2008, 178(4): 1205-1218.
  • 10Dubuisson M E Jain A K. A modified Hausdorff distance for object matching[C]. Proc of the 12th IAPR Int Conf on Pattern Recognition. Jerusalem, 1994: 566-568.

二级参考文献28

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimensional entropy[J]. Computer,Vision Graphic Image Process, 1989,47 (1) : 22-32.
  • 3Shanbhag A G. Utilization of information measure as a means of image thresholding [J].Computer Vision,Graphics,Image Processing-Graphical Model and Image Processing, 1994,56(5) : 414-419.
  • 4Juliana F, Camapum W, Mark H F. Spatial-feature parametric clustering applied to motion-based segmentation in camouflage [J]. Computer Vision and Image Understanding, 2002,85 (2) : 144-157.
  • 5Constantine K, Ioannis P. Segmentation of ultrasonic images using support vector machines[J]. Pattern Recognition Letters, 2003, (24) : 715-727.
  • 6Bhanu B,Lee S,Ming J.Self-optimizing image segmentation system using a generic algorithm[A].Proc of the 4th Int Conf on Generic Algorithms[C]. San Diego:Morgan Kaufmann Publishers, 1991 : 362-369.
  • 7Wiro J Niessen, Koen L Vincken. Nonlinear multiscale representations for Image Segmentation [J]. Computer Vision and Image Understanding, 1997,66(2):233-245.
  • 8Otsu N.A threshold selection method from gray-level histogram[J].IEEE Trans on Systems,Man and Cybernetic,1979,9(1):62-66.
  • 9Kapur J N,Sahoo P K,Wong A K C.A new method for gray-level picture thresholding using the entropy of the histogram[J].Computer Vision,Graphics and Image Processing,1985,29(3):273-285.
  • 10Abutaleb A S.Automatic thresholding of gray-level pictures using two-dimensional entropy[J].Computer Vision,Graphics and Image Processing,1989,47(1):22-32.

共引文献50

同被引文献31

  • 1姜惠兰,孙雅明.异联想记忆Hopfield神经网络的模型、算法及性能[J].系统工程理论与实践,2005,25(5):101-107. 被引量:9
  • 2汤凌,郑肇葆,虞欣.一种基于人工免疫的图像分割算法[J].武汉大学学报(信息科学版),2007,32(1):67-70. 被引量:16
  • 3Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9): 1277-1294.
  • 4Haralick R M,Shapiro L G..Image Segmentation Techniques[J].CVGIP,1985,29(1): 100-132.
  • 5Muller S D,Marchetto J,Airaghi S,et al.Optimization Based on Bacterial Chemotaxis[J].IEEE Transactions on Evolutionary Computation,2002,6(1): 16-29.
  • 6Ostu N.A Threshold Selection Method from Gray Level Histog- ram[J].IEEE Trans.on System,Man and Cybernetics,1979,9(1): 62-66.
  • 7李玉刚.基于免疫遗传算法的图像分割方法[J],2009.
  • 8童振.免疫组化细胞显微图像分割算法研究与应用[J],2012.
  • 9Hopfield J J. Neurons with graded response havecollective computational properties like those of two sateneurons[J], Proc Nat Acad Sci USA. 1984, 81 (8):3088-3092.
  • 10Mcmliece RJ,Rodemich, Eugene R, etal. The capacityof the Hopfield associative memory[J]. IEEE Transactionson Information Theory, 1987,33(4) : 461-483.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部