期刊文献+

随机和区间混合变量下结构可靠性分析方法研究 被引量:8

STRUCTURAL RELIABILITY ANALYSIS BASED ON RANDOM AND INTERVAL MIXED MODEL
原文传递
导出
摘要 建立了包含随机变量和区间变量的结构功能函数,从失效概率积分式出发,推导出结构失效度为以区间变量为自变量的失效度函数在区间变量域上的均值,进而提出根据区间变量是否相关和问题的精度要求,在区间变量域中按照一定的规则抽取一定量的实现值,将对应的随机失效度的平均值作为结构失效度的近似值,从而形成了随机-区间混合变量下的结构可靠性分析模型。采用Monte Carlo模拟仿真运算,可得到较为精确的分析结果。实例分析验证了该文方法的合理性和可行性,并与其它模型的分析结果进行了比较。 The limit-state function containing stochastic and interval variables was given. A hybrid probabilistic and interval mixed model for structural reliability was presented. From failure probability integration, it was derived that the failure probability is the mean value of the failure probability considering the randomness of the interval variable. According to the required precision and considering whether the interval variables were correlated, a certain amount of data were pumped in the range of interval variables, and then the mean value of stochastic failure degrees was calculated as the approximate value of structure failure degree. Monte Carlo method was proposed to realize the analogy calculation. A practical example illustrated the application of the proposed theory. The result was compared with that of other reliability models. It was showed that the theory in this paper can overcome the shortcomings of the hybrid model and has reasonableness and feasibility.
出处 《工程力学》 EI CSCD 北大核心 2010年第11期22-27,共6页 Engineering Mechanics
基金 总装备部武器装备预研基金项目
关键词 结构可靠性 随机变量 区间变量 混合模型 MONTE CARLO方法 structural reliability random variable interval variable mixed model Monte Carlo method
  • 相关文献

参考文献25

  • 1Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: From A M Freudenthal's criticisms to modem convex modeling [J]. Computers & Structures, 1995, 56(6): 871--895.
  • 2Elishakoff I. Are probabilistic and anti-optimization approaches compatible? Whys and hows in uncertainty modeling: Probability, fuzziness and anti-optimization [M]. New York: Springer Wien, 1999.
  • 3Ben-Haim -, Elishakoff I. Convex models of uncertainty in applied mechanics [M]. Amsterdam: Elsevier Science Publishers, 1990.
  • 4Ben-Haim Y. A non-probabilistic concept of reliability [J]. Structural Safety, 1994, 14(4): 227--245.
  • 5Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety, 1995, 17(2): 91 -- 109.
  • 6Ben-Haim Y. Robust reliability in the mechanical sciences [M]. Berlin: Springer-Verlag, 1996.
  • 7Ben-Haim Y. Robust rationality and decisions under severe uncertainty [J]. Journal of the Franklin Institute, 2000, 337(2): 171-- 199.
  • 8Elishakoff I, Seyranian A P. Modem problems of structural stability: Whys and hows in uncertainty modeling [M]. Springer: Vienna, 2001.
  • 9Au F T K, Cheng Y S, Tham L G, Zeng G W. Robust design of structures using convex models [J]. Computers and Structures, 2003, 81 : 2611 --2619.
  • 10Luo Y, Kang Z, Luo Z, Li A. Continuum topology optimization with nonprobabilistic reliability constraints based on multi-ellipsoid convex model [J]. Struct Multidiscip Optim, 2008. doi: 10.1007/s00158-008- 0329-1.

二级参考文献60

共引文献365

同被引文献80

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部